PROBABILITY Concepts and Formulae

Conditional Probability	Definition	If E and F are two events associated with the same sample space of a random experiment, the conditional probability of the event E given that F has occurred, i.e. $P(E \mid F)$ is given by
	Properties	

	Theorem of Total probability	Let $\left\{E_{1}, E_{2}, \ldots, E_{n}\right\}$ be a partition of the sample space S, and suppose that each of the events E_{1}, $\mathrm{E}_{2}, \ldots, \mathrm{E}_{\mathrm{n}}$ has nonzero probability of occurrence. Let A be any event associated with S , then $\begin{aligned} & P(A)=P\left(E_{1}\right) P\left(A \mid E_{1}\right)+P\left(E_{2}\right) P\left(A \mid E_{2}\right)+\ldots+ \\ & P\left(E_{n}\right) P\left(A \mid E_{n}\right) \\ & =\sum_{j=1}^{n} P\left(E_{j}\right) P\left(A \mid E_{j}\right) \end{aligned}$
	Bayes' Theorem	If $E_{1}, E_{2}, \ldots, E_{n}$ are n non-empty events which constitute a partition of sample space S and A is any event of nonzero probability, then $P(E i \mid A)=\frac{P\left(E_{i}\right) P\left(A \mid E_{i}\right)}{\sum_{j=1}^{n} P\left(E_{j}\right) P\left(A \mid E_{j}\right)} \text { for any } I=1,2,3, \ldots n$
Random Variables and its Probability Distributions	Random Variable	A random variable is a real valued function whose domain is the sample space of a random experiment.
	Probability distribution of a random variable	The probability distribution of a random variable X is the system of numbers $\begin{array}{cccccc} X & : & x_{1} & x_{2} & \ldots . . & x_{n} \\ P(X) & : & p_{1} & p_{2} & \ldots . & p_{n} \\ \text { where } p_{i}> & > & \sum_{i=1}^{n} p_{i}=1, i=1,2,3, \ldots, n \end{array}$ The real numbers $x_{1}, x_{2}, \ldots, x_{n}$ are the possible values of the random variable X and $p_{i}(i=1,2, \ldots, n)$ is the probability of the random variable X taking the value x_{i} i.e. $P\left(X=x_{i}\right)=p_{i}$
	Mean of a random variable	The mean of the random variable X is given by: $\mu=\sum_{i=1}^{n} x_{i} p_{i}$ The mean of a random variable X is also called the expectation of X, denoted by $E(X)$. Thus, $E(X)=\mu=\sum_{i=1}^{n} x_{i} p_{i}$
	Variance of a random variable	The variance of the random variable X, denoted by $\operatorname{Var}(X)$ or $\sigma_{x}{ }^{2}$ is defined as

		$\sigma_{x}^{2}=\operatorname{Var}(X)=\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2} p\left(x_{i}\right)=E(X-\mu)^{2}$ $\operatorname{Var}(X)=E\left(X^{2}\right)-[E(X)]^{2}$
	Standard Deviation	$\sigma_{x}=\sqrt{\operatorname{Var}(X)}=\sqrt{\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2} p\left(x_{i}\right)}$
Bernoulli Trials and Binomial Distribution	Bernoulli Trials	Trials of a random experiment are called Bernoulli trials, if they satisfy the following conditions : (i) There should be a finite number of trials. (ii) The trials should be independent. (iii) Each trial has exactly two outcomes: success or failure. (iv) The probability of success remains the same in each trial.
	Binomial distribution	For Binomial distribution $B(n, p)$, $P(X=x)={ }^{n} C_{x} q^{n-x} p^{x}, x=0,1, \ldots, n$ $(q=1-p)$

