

Unit: VECTORS AND 3-DIMENSIONAL GEOMETRY Concepts and Formulae

VECTORS

	-	
Positio	Definiti	The position vector of point $P \equiv (x_1, y_1, z_1)$ with respect to
n Vector	on	the origin is given by:
vector		$\overrightarrow{OP} = \overrightarrow{r} = \sqrt{x^2 + y^2 + z^2}$
Directi	Definiti	If the position vector \overrightarrow{OP} of a point P makes angles α , β
on	on	and γ with x, y and z axis respectively, then α,β and γ are
cosines		called the direction angles and $\cos\alpha$, $\cos\beta$ and $\cos\gamma$ are
		called the Direction cosines of the position vector.
Directi	Relation	The magnitude (r), direction ratios (a, b, c)
on	betwee	and direction cosines (ℓ , m, n) of
ratios	n drs dcs and	any vector are related as:
	magnit	a m c
	ude of	$\ell = \frac{a}{r}, m = \frac{m}{r}, n = \frac{c}{r}$
	the	
	vector	
Vector	Laws	Triangle Law: Suppose two vectors are represented by
Additio		two sides of a triangle in sequence, then the third closing
n		side of the triangle represents the sum of the two
		vectors
		$\overrightarrow{PQ} + \overrightarrow{QR} = \overrightarrow{PR}$
		Parallelogram Law : If two vectors \vec{a} and \vec{b} are
		represented by two adjacent sides of a parallelogram in
		magnitude and direction, then their sum $\vec{a} + \vec{b}$ is
		represented in magnitude and direction by the diagonal
		of the parallelogram.
		$\overrightarrow{OA}_{22+}\overrightarrow{OB}_{=}\overrightarrow{OC}$

r	1	
Prcpert ies of vector a`ditio n	Commu tative + ropert Y	For any two vectors \vec{a} and \vec{b} , $\vec{a} + \vec{b} = \vec{b} + \vec{a}$
	Associa tive propert y	For any three vectors \vec{a}, \vec{b} and $\vec{c},$ $(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$
Multipli catiof of a vec 0or by a scalar	Definiti on	If \vec{a} is a vector and λ a scalar. Product of vector \vec{a} by the scalar λ is $\lambda \vec{a}$. Also, $ \lambda \vec{a} = \lambda \vec{a} $
	Properti es	Let \vec{a} and \vec{b} be any two vectors and k and m being two scalars then (i) $k\vec{a}$ +m \vec{a} =(k+m) \vec{a} (ii) $k(m\vec{a})$ = (km) \vec{a} (iii) $k(\vec{a}+\vec{b})$ = $k\vec{a}$ + $k\vec{b}$
Vector joining two points	Definiti on	The vector $\overrightarrow{P_1P_2}$ joining points $P_1(x_1, y_1, z_1)$ and $P_2(x_2, y_2, z_2)$ (O is the origin) is given by: $\overrightarrow{P_1P_2} = \overrightarrow{OP_2} - \overrightarrow{OP_1}$
	Magnitu de	The magnitude of vector $\overrightarrow{P_1P_2}$ is given by $\overrightarrow{P_1P_2} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$
Compo nent Form		Vector in component form $\vec{r} = x \hat{i} + y \hat{j} + z \hat{k}$ Equality of vectors $\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$ $\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$ $\vec{a} = \vec{b} \implies a_1 = b_1$, $a_2 = b_2$ and $a_3 = b_3$
	Operati ons	$\vec{a} = {a_1}\hat{i} + {a_2}\hat{j} + {a_3}\hat{k}$ and $\vec{b} = {b_1}\hat{i} + {b_2}\hat{j} + {b_3}\hat{k}$

TOPPER IMPORTANT FORMULAE

		Addition of vectors $\vec{a} + \vec{b} = (a_1 + b_1)\hat{i} + (a_2 + b_2)\hat{j} + (a_3 + b_3)\hat{k}$ Subtraction of vectors $\vec{a} - \vec{b} = (a_1 - b_1)\hat{i} + (a_2 - b_2)\hat{j} + (a_3 - b_3)\hat{k}$ \vec{a} and \vec{b} are collinear $\vec{b} = \lambda \vec{a}$. where λ is a non zero scalar.
Product of Two Vectors	Scalar (or dot) product of two vectors	Scalar product of two nonzero vectors \vec{a} and \vec{b} , denoted by $\vec{a}.\vec{b} = \vec{a} \vec{b} \cos\theta$, where θ is the angle between \vec{a} and \vec{b} , $0 \le \vec{a} \vec{b} \cos\theta$, where θ is the angle between \vec{a} and \vec{b} , $0 \le \vec{a} \vec{b} \cos\theta$, where θ is the angle between \vec{a} and \vec{b} , $0 \le \vec{a} \vec{b} \cos\theta$.
	Properti es of scalar Product	(i) $\vec{a} \cdot \vec{b}$ is a real number. (ii) If \vec{a} and \vec{b} are non zero vectors then $\vec{a} \cdot \vec{b} = 0 \Leftrightarrow \vec{a} \perp \vec{b}$. (iii) Scalar product is commutative $: \vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$ (iv) If $\theta = 0$ then $\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{b} $ (v) If $\theta = \pi$ then $\vec{a} \cdot \vec{b} = - \vec{a} \cdot \vec{b} $ (vi) scalar product distribute over addition Let \vec{a} , \vec{b} and \vec{c} be three vectors, then $\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$
		(vii)Let \vec{a} and \vec{b} be two vectors, and λ be any scalar. Then $(\lambda \vec{a}).\vec{b} = (\lambda \vec{a}).\vec{b} = \lambda(\vec{a}.\vec{b}) = a.(\lambda \vec{b})$ (viii) Angle between two non zero vectors \vec{a} and \vec{b} is given by $\cos \theta = \frac{\vec{a}.\vec{b}}{ \vec{a} . \vec{b} }$
	Projecti on of a vector	Projection of a vector \vec{a} on other vector \vec{b} is given by $\vec{a}.\hat{b}$ or $\vec{a}.\left(\frac{\vec{b}}{ \vec{b} }\right)$ or $\frac{1}{ \vec{b} }(\vec{a}.\vec{b})$

Castian	The position vector of a point D dividing a line as most is!
Section formula	The position vector of a point R dividing a line segment joi
	P and Q whose position vectors are \vec{a} and \vec{b} respectively, in
	(i) internally, is given by $rac{n ar{a} + m ar{b}}{m + n}$
	(ii) externally, is given by $\frac{m\vec{b}-n\vec{a}}{m-n}$
Inequali ties	Cauchy-Schwartz Inequality ā.b ≤ ā . b
	Triangle Inequality: 🗵
Vector	The vector product of two nonzero vectors \vec{a} and \vec{b} ,
(or cross)	denoted by $\vec{a} \times \vec{b}$ and defined as
product	$\vec{a} \times \vec{b} = a b \sin\theta\hat{n}$
of two vectors	where, θ is the angle between \vec{a} and $\vec{b}, 0 \leq \theta \leq \pi$
Vectors	and \hat{n} is a unit vector perpendicular to both \vec{a} and \vec{b}
	such that \vec{a}, \vec{b} and \hat{n} form a right handed system.
Properti es of cross product of vectors	(i) $\vec{a} \times \vec{b}$ is a vector (ii) If \vec{a} and \vec{b} are non zero vectors then $\vec{a} \times \vec{b} = 0$ iff \vec{a} and \vec{b} are collinear. (iii) If $\theta = \frac{\pi}{2}$, then $ \vec{a} \times \vec{b} = \vec{a} \cdot \vec{b} $ (iv) vector product distribute over addition If \vec{a}, \vec{b} and \vec{c} are three vectors and λ is a scalar, then (i) $\vec{a} \times (\vec{b} + \vec{c}) = (\vec{a} \times \vec{b}) + (\vec{a} \times \vec{c})$ (ii) $\lambda(\vec{a} \times \vec{b}) = (\lambda \vec{a}) \times \vec{b} = \vec{a} \times (\lambda \vec{b})$ (v) If we have two vectors \vec{a} and \vec{b} given in component form as $\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$ and $\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$ then $\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$

Three-DIMENSIONAL GEOMETRY

Direction	Definition	The direction cosines of the line joining
Cosines		P(x_1,y_1,z_1) and Q(x_2,y_2,z_2) are
		$\frac{\mathbf{x}_2 - \mathbf{x}_1}{PQ}, \frac{\mathbf{y}_2 - \mathbf{y}_1}{PQ}, \frac{\mathbf{z}_2 - \mathbf{z}_1}{PQ}$
		where PQ= $\sqrt{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2}$
Skew Lines	Definition	Skew lines are lines in space which are neither parallel nor intersecting. They lie in different planes.
	Angle between skew lines	Angle between skew lines is the angle between two intersecting lines drawn from any point (preferably through the origin) parallel to each of the skew lines.
	Angle between two lines	The angle θ between two vectors $\overrightarrow{OA} = a_1\hat{i} + b_1\hat{j} + c_1\hat{k}$ and $\overrightarrow{OB} = a_2\hat{i} + b_2\hat{j} + c_2\hat{k}$ is given b $\cos \theta = \left \frac{a_1a_2 + b_1b_2 + c_1c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2}\sqrt{a_2^2 + b_2^2 + c_2^2}} \right $
Equation of a line	Vector Equation	Vector equation of a line that passes through the given point whose position vector is \vec{a} and parallel to a given vector \vec{b} is $\vec{r}=\vec{a}+\lambda\vec{b}$
	Cartesian Equation	Direction ratios of the line L are a, b, c. Then, cartesian form of equation of the line L is : $\frac{x-x_1}{a} = \frac{y-y_1}{b} = \frac{z-z_1}{c}$
	Equation of line passing through two given points	 Vector Equation The vector equation of a line which passes through two points whose position vectors are ā and b is r̄=ā+λ(b̄-ā) 2) Cartesian Equation

TOPPER IMPORTANT FORMULAE

	Condition	Cartesian equation of a line that passes through tw points (x_1, y_1, z_1) and (x_2, y_2, z_2) is $\frac{X-X_1}{X_2-X_1} = \frac{Y-Y_1}{Y_2-Y_1} = \frac{Z-Z_1}{Z_2-Z_1}$
	for perpendicu larity	Two lines with direction ratios a_1 , a_2 , a_3 and b_1 , b_2 , b_3 respectively are perpendicular if: a_2b_2 , c_1c_2 0
	Condition for parallel lines	Two lines with direction ratios a_1 , a_2 , a_3 and b_1 , b_2 , b_3 respectively are parallel if $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$
Shortest Distance between two lines in space	Distance between two skew lines:	1) <u>Vector form:</u> Shortest distance between two skew lines L and m, $\vec{r} = \vec{a_1} + \lambda \vec{b_1}$ and $\vec{r} = \vec{a_2} + \mu \vec{b_2}$ is $d = \left \frac{\vec{b_1} \times \vec{b_2} \cdot (\vec{a_2} - \vec{a_1})}{ \vec{b_1} \times \vec{b_2} } \right $ 2) <u>Cartesian form</u> The equations of the lines in Cartesian form $\frac{x - x_1}{a_1} = \frac{y - y_1}{b_1} = \frac{z - z_1}{c_1}$ and $\frac{x - x_2}{a_2} = \frac{y - y_2}{b_2} = \frac{z - z_2}{c_2}$ Then the shortest distance between them is $\begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix}$ $d = \frac{\sqrt{(b_1 c_2 - b_2 c_1)^2 + (c_1 a_2 - c_2 a_1)^2 + (a_1 b_2 - a_2 b_1)^2}}{\sqrt{(b_1 c_2 - b_2 c_1)^2 + (c_1 a_2 - c_2 a_1)^2 + (a_1 b_2 - a_2 b_1)^2}}$
	Distance between parallel lines	Distance between parallel lines $\vec{r} = \vec{a_1} + \lambda \vec{b}$ and $\vec{r} = \vec{a_2} + \mu \vec{b}$ is $d = \left \frac{\vec{b} \times (\vec{a_2} - \vec{a_1})}{ \vec{b} } \right $
Equation of plane		In the vector form, equation of a plane which is at a distance d from the origin, and \hat{n} is the unit vector normal to the plane through the origin is

		$\vec{r}.\hat{n} = d$
Equation of plane		Equation of a plane which is at a distance of d from the origin and the direction cosines of the normal to the plane as I, m, n is lx + my + nz = d.
Equation of plane		Equation of a plane perpendicular to a given line with direction ratios A, B, C and passing through a given point (x_1, y_1, z_1) is A $(x - x_1) + B (y - y_1) + C (z - z_1) = 0$
Equation of plane		Equation of a plane passing through three non collinear points (x_1, y_1, z_1) , (x_2, y_2, z_2) and (x_3, y_3, z_3) is $\begin{vmatrix} x-x_1 & y-y_1 & z-z_1 \\ x_2-x_1 & y_2-y_1 & z_2-z_1 \\ x_3-x_1 & y_3-y_1 & z_3-z_1 \end{vmatrix} = 0$
Equation of plane	Intercept form of equation of plane.	Equation of a plane that makes intercepts a, b and c with x, y and z-axes respectively is $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$
Equation of plane	Equation of a plane passing through the intersectio n of two given planes.	Any plane passing thru the intersection of two planes $\vec{r} \cdot \vec{n_1} = d_1$ and $\vec{r} \cdot \vec{n_2} = d_2$ is given by, $\vec{r} \cdot (\vec{n_1} + \lambda \vec{n_2}) = d_1 + \lambda d_2$
	Coplanarity of two lines	1) <u>Vector form:</u> The given lines $\vec{r} = \vec{a_1} + \lambda \vec{b_1}$ and $\vec{r} = \vec{a_2} + \mu \vec{b_2}$ are coplanar if and only $(\vec{a_2} - \vec{a_1}).(\vec{b_1} \times \vec{b_2}) = 0$
		2) <u>Cartesian Form</u> Let (x_1,y_1,z_1) and (x_2,y_2,z_2) be the coordinates of the points M and N respectively. Let a_1 , b_1 , c_1 and a_2 , b_2 , c_2 be the direction ratios

TOPPER IMPORTANT FORMULAE

		of $\overrightarrow{b_1}$ and \overrightarrow{x} respectively. The given lines are coplanar if and only if $\begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix} = 0$
Angle between two planes	Vector form	If $\vec{n_1}$ and $\vec{n_2}$ are normals to the planes $\vec{r}.\vec{n_1} = d_1$ and $\vec{r}.\vec{n_2} = d_2$ and θ is the angle between the normals drawn from some common point. $\cos \theta = \left \frac{\vec{n_1}.\vec{n_2}}{ \vec{n_1} \vec{n_2} } \right $
	Cartesian form	Let θ is the angle between two planes $A_1x+B_1y+C_1z+D_1=0$, $A_2x+B_2y+C_2z+D_2=0$ The direction ratios of the normal to the planes are $\Box_1\Box\Box\Box\Box\Box\Box_1\Box\Box\Box\Box\Box_2\Box\Box_2\Box\Box\Box_2$. $\cos \theta = \overline{OP} = \vec{r} = \sqrt{x^2 + y^2 + z^2}$
Angle between a line and a plane		Let the angle between the line and the normal to the plane = θ $\cos\theta = \frac{\left \vec{b}.\vec{n}\right }{\left \vec{b}\right \left \vec{n}\right }$
Distance of a point from a plane		Distance of point P with position vector \vec{a} from a plane $\vec{r}.\vec{N} = d$ is $\frac{ \vec{a}.\vec{N} \cdot d }{ \vec{N} }$ where \vec{N} is the normal to the plane