Unit: VECTORS AND 3-DIMENSIONAL GEOMETRY Concepts and Formulae

VECTORS

Positio n Vector	Definiti on	The position vector of point $\mathrm{P} \equiv\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ with respect to the origin is given by: $\overrightarrow{\mathrm{OP}}=\overrightarrow{\mathrm{r}}=\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}}$
Directi on cosines	Definiti on	If the position vector $\overrightarrow{\mathrm{OP}}$ of a point P makes angles α, β and γ with x, y and z axis respectively, then α, β and γ are called the direction angles and $\cos \alpha, \cos \beta$ and $\cos \gamma$ are called the Direction cosines of the position vector.
Directi on ratios	Relation betwee n drs dcs and magnit ude of the vector	The magnitude (r), direction ratios (a, b, c) and direction cosines (ℓ, m, n) of any vector are related as: $\ell=\frac{\mathrm{a}}{\mathrm{r}}, \mathrm{~m}=\frac{\mathrm{m}}{\mathrm{r}}, \mathrm{n}=\frac{\mathrm{c}}{\mathrm{r}}$
Vector Additio n	Laws	Triangle Law: Suppose two vectors are represented by two sides of a triangle in sequence, then the third closing side of the triangle represents the sum of the two vectors $\overrightarrow{\mathrm{PQ}}+\overrightarrow{\mathrm{QR}}=\overrightarrow{\mathrm{PR}}$ Parallelogram Law: If two vectors \vec{a} and \vec{b} are represented by two adjacent sides of a parallelogram in magnitude and direction, then their sum $\vec{a}+\vec{b}$ is represented in magnitude and direction by the diagonal of the parallelogram.

Prcpert ies of vector a ditio n	Commu tative t ropert y	For any two vectors \vec{a} and \vec{b}, $\vec{a}+\vec{b}=\vec{b}+\vec{a}$
	Associa tive propert y	For any three vectors \vec{a}, \vec{b} and \vec{c}, $(\vec{a}+\vec{b})+\vec{c}=\vec{a}+(\vec{b}+\vec{c})$
Multipli catiof of a vec Oor by a scalar	Definiti on	If \vec{a} is a vector and λ a scalar. Product of vector $\vec{a} b y$ the scalar λ is $\lambda \vec{a}$.
Also, $\|\lambda \vec{a}\|=\|\lambda\|\|\vec{a}\|$		

		Addition of vectors $\vec{a}+\vec{b}=\left({ }^{a_{1}}+\square\right) \hat{i}+\left({ }^{a_{2}}+b_{2}\right) \hat{j}+\left({ }^{a_{3}}+b_{3}\right) \hat{k}$ Subtraction of vectors $\vec{a}-\vec{b}=\left({ }^{a_{1}}-b_{1}\right) \hat{i}+\left({ }^{a_{2}}-b_{2}\right) \hat{j}^{\prime}+\left({ }^{a_{3}}\right.$ $\left.b_{3}\right) \hat{k}$ \vec{a} and \vec{b} are collinear $\mid \overrightarrow{Q_{x}} \vec{b}=\lambda \vec{a}$. where λ is a non zero scalar.
Product of Two Vectors	Scalar (or dot) product of two vectors	Scalar product of two nonzero vectors \vec{a} and \vec{b}, denoted by $\vec{a} \cdot \vec{b}=\|\vec{a}\|\|\vec{b}\| \cos \theta$, where θ is the angle between \vec{a} and $\vec{b}, 0 \leq$
	Properti es of scalar Product	(i) $\vec{a} \cdot \vec{b}$ is a real number. (ii)If \vec{a} and \vec{b} are non zero vectors then $\vec{a} \cdot \vec{b}=0 \Leftrightarrow \vec{a} \perp \vec{b}$. (iii) Scalar product is commutative : $\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{a}$ (iv)If $\theta=0$ then $\vec{a} \cdot \vec{b}=\|\vec{a}\| \cdot\|\vec{b}\|$ (v) If $\theta=\pi$ then $\vec{a} \cdot \vec{b}=-\|\vec{a}\| \cdot\|\vec{b}\|$ (vi) scalar product distribute over addition Let \vec{a}, \vec{b} and \vec{c} be three vectors, then $\vec{a} \cdot(\vec{b}+\vec{c})=\vec{a} \cdot \vec{b}+\vec{a} \cdot \vec{c}$ (vii)Let \vec{a} and \vec{b} be two vectors, and λ be any scalar. Then $(\lambda \vec{a}) \cdot \vec{b}=(\lambda \vec{a}) \cdot \vec{b}=\lambda(\vec{a} \cdot \vec{b})=a \cdot(\lambda \vec{b})$ (viii) Angle between two non zero vectors \vec{a} and \vec{b} is given by $\cos \theta=\frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\| \cdot\|\vec{b}\|}$
	Projecti on of a vector	Projection of a vector \vec{a} on other vector \vec{b} is given by $\vec{a} . \hat{b}$ or $\vec{a} .\left(\frac{\vec{b}}{\|\vec{b}\|}\right)$ or $\frac{1}{\|\vec{b}\|}(\vec{a} \cdot \vec{b})$

	Section formula	The position vector of a point R dividing a line segment joi P and Q whose position vectors are \vec{a} and \vec{b} respectively, in (i) internally, is given by $\frac{n \vec{a}+m \vec{b}}{m+n}$ (ii) externally, is given by $\frac{m \vec{b}-n \vec{a}}{m-n}$
	Inequali ties	Cauchy-Schwartz Inequality $\|\vec{a} \cdot \vec{b}\| \leq\|\vec{a} \cdot\| \vec{b} \mid$ Triangle Inequality:
	Vector (or cross) product of two vectors	The vector product of two nonzero vectors \vec{a} and \vec{b}, denoted by $\vec{a} \times \vec{b}$ and defined as $\vec{a} \times \vec{b}=\|a\|\|b\| \sin \theta \hat{n}$ where, θ is the angle between \vec{a} and $\vec{b}, 0 \leq \theta \leq \pi$ and \hat{n} is a unit vector perpendicular to both \vec{a} and \vec{b} such that \vec{a}, \vec{b} and \hat{n} form a right handed system.
	Properti es of cross product of vectors	(i) $\vec{a} \times \vec{b}$ is a vector (ii) If \vec{a} and \vec{b} are non zero vectors then $\vec{a} \times \vec{b}=0$ iff \vec{a} and \vec{b} are collinear. (iii) If $\theta=\frac{\pi}{2}$, then $\|\vec{a} \times \vec{b}\|=\|\vec{a}\| \cdot\|\vec{b}\|$ (iv) vector product distribute over addition If \vec{a}, \vec{b} and \vec{c} are three vectors and λ is a scalar, then (i) $\vec{a} \times(\vec{b}+\vec{c})=(\vec{a} \times \vec{b})+(\vec{a} \times \vec{c})$ (ii) $\lambda(\vec{a} \times \vec{b})=(\lambda \vec{a}) \times \vec{b}=\vec{a} \times(\lambda \vec{b})$ (v) If we have two vectors \vec{a} and \vec{b} given in component form as $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}$ and $\vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}$ then $\vec{a} \times \vec{b}=\left\|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right\|$

TOPPER

Three-DIMENSIONAL GEOMETRY

$\left.\left.\begin{array}{|l|l|l|}\hline \begin{array}{l}\text { Direction } \\ \text { Cosines }\end{array} & \text { Definition } & \begin{array}{l}\text { The direction cosines of the line joining } \\ P\left(x_{1}, y_{1}, z_{1}\right) \text { and } Q\left(x_{2}, y_{2}, z_{2}\right) \text { are } \\ \frac{x_{2}-x_{1}}{P Q}, \frac{y_{2}-y_{1}}{P Q}, \frac{z_{2}-z_{1}}{P Q}\end{array} \\ \text { where } P Q=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}\end{array} \right\rvert\, \begin{array}{ll}\text { Skew lines are lines in space which are neither } \\ \text { parallel nor intersecting. They lie in different } \\ \text { planes. }\end{array}\right]$

		Cartesian equation of a line that passes through tw points (x_{1}, y_{1}, z_{1}) and (x_{2}, y_{2}, z_{2}) is $\frac{x-x_{1}}{x_{2}-x_{1}}=\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{z-z_{1}}{z_{2}-z_{1}}$
	Condition for perpendicu larity	Two lines with direction ratios a_{1}, a_{2}, a_{3} and b_{1}, b_{2}, b_{3} respectively are perpendicular if: $\begin{array}{\|lll} \begin{array}{ll} \alpha \times p_{1}!!A_{2} \boxtimes y_{2} & C_{1} C_{2} \end{array} & 0 \end{array}$
	Condition for parallel lines	Two lines with direction ratios a_{1}, a_{2}, a_{3} and b_{1}, b_{2}, b_{3} respectively are parallel if $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
Shortest Distance between two lines in space	Distance between two skew lines:	1) Vector form: Shortest distance between two skew lines L and $m, \vec{r}=\overrightarrow{a_{1}}+\lambda \overrightarrow{b_{1}}$ and $\vec{r}=\overrightarrow{a_{2}}+\mu \overrightarrow{b_{2}}$ is $d=\left\|\frac{\overrightarrow{b_{1}} \times \overrightarrow{b_{2}} \cdot\left(\overrightarrow{a_{2}}-\overrightarrow{a_{1}}\right)}{\left\|\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right\|}\right\|$ 2) Cartesian form The equations of the lines in Cartesian form $\frac{x-x_{1}}{a_{1}}=\frac{y-y_{1}}{b_{1}}=\frac{z-z_{1}}{c_{1}} \text { and } \frac{x-x_{2}}{a_{2}}=\frac{y-y_{2}}{b_{2}}=\frac{z-z_{2}}{c_{2}}$ Then the shortest distance between them is $d=\frac{\left\|\begin{array}{ccc} x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\ a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \end{array}\right\|}{\sqrt{\left(b_{1} c_{2}-b_{2} c_{1}\right)^{2}+\left(c_{1} a_{2}-c_{2} a_{1}\right)^{2}+\left(a_{1} b_{2}-a_{2} b_{1}\right)^{2}}}$
	Distance between parallel lines	Distance between parallel lines $\vec{r}=\overrightarrow{a_{1}}+\lambda \vec{b}$ and $\vec{r}=\overrightarrow{a_{2}}+\mu \vec{b}$ is $d=\left\|\frac{\vec{b} \times\left(\overrightarrow{a_{2}}-\overrightarrow{a_{1}}\right)}{\|\vec{b}\|}\right\|$
Equation of plane		In the vector form, equation of a plane which is at a distance d from the origin, and \hat{n} is the unit vector normal to the plane through the origin is

		$\vec{r} \cdot \hat{n}=d$ Equation of plane Equation of plane
Equation of plane	Equation of a plane which is at a distance of d from the origin and the direction cosines of the normal to the plane as $\mathrm{I}, \mathrm{m}, \mathrm{n}$ is lx $+m y+n z=\mathrm{d}$.	

		of $\overrightarrow{\mathrm{b}_{1}}$ and respectively. The given lines are coplanar if and only if $\left\|\begin{array}{ccc} x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\ a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \end{array}\right\|=0$
Angle between two planes	Vector form	If $\overrightarrow{n_{1}}$ and $\overrightarrow{n_{2}}$ are normals to the planes $\vec{r} \cdot \overrightarrow{n_{1}}=d_{1}$ and $\vec{r} \cdot \vec{n}_{2}=d_{2}$ and θ is the angle between the normals drawn from some common point. $\cos \theta=\left\|\frac{\overrightarrow{n_{1}} \cdot \overrightarrow{n_{2}}}{\left\|\overrightarrow{n_{1}}\right\|\left\|\overrightarrow{n_{2}}\right\|}\right\|$
	Cartesian form	Let θ is the angle between two planes $A_{1} x+B_{1} y+C_{1} z+D_{1}=0, A_{2} x+B_{2} y+C_{2} z+D_{2}=0$ The direction ratios of the normal to the planes are $\square_{1} \square \square \square \square \square \square \square_{1} \square \square \square \square \square \square_{2} \square \square \square_{2} \square \square \square \square_{2}$. $\cos \theta=$ $\overrightarrow{\mathrm{OP}}=\overrightarrow{\mathrm{r}}=\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}}$
Angle between a line and a plane		Let the angle between the line and the normal to the plane $=\theta$ $\cos \theta=\left\|\frac{\overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{n}}}{\|\overrightarrow{\mathrm{~b}}\| \mid \overrightarrow{\mathrm{n}}}\right\|$
Distance of a point from a plane		Distance of point P with position vector \vec{a} from a plane $\vec{r} \cdot \vec{N}=d$ is $\frac{\|\vec{a} \cdot \vec{N}-d\|}{\|\vec{N}\|}$ where \vec{N} is the normal to the plane

