TOPPER

IMPORTANT FORMULAE

Ch: RELATIONS AND FUNCTIONS

Key Concepts

1. A relation R between two non empty sets A and B is a subset of their Cartesian Product $A \times B$. If $A=B$ then relation R on A is a subset of $A \times A$
2. If (a, b) belongs to R, then a is related to b, and written as a $R \quad b$ If (a, b) does not belongs to R then $a R^{\prime} b$.
3. Let R be a relation from A to B.

Then Domain of $R \subset A$ and R ange of $R \subset B$ co domain is either set B or any of its superset or subset containing range of R
4. A relation R in a set A is called empty relation, if no element of A is related to any element of A, i.e., $R=\phi \subset A \times A$.
5. A relation R in a set A is called universal relation, if each element of A is related to every element of A, i.e., $R=A \times A$.
6. $\quad A$ relation R in a set A is called
a. Reflexive, if $(a, a) \in R$, for every $a \in A$,
b. Symmetric, if $\left(a_{1}, a_{2}\right) \in R$ implies that $\left(a_{2}, a_{1}\right) \in R$, for all $a_{1}, a_{2} \in A$.
c. Transitive, if $\left(a_{1}, a_{2}\right) \in R$ and $\left(a_{2}, a_{3}\right) \in R$ implies that $\left(a_{1}, a_{3}\right) \in R$, or all $a_{1}, a_{2}, a_{3} \in A$.
7. A relation R in a set A is said to be an equivalence relation if R is reflexive, symmetric and transitive.
8. The empty relation R on a non-empty set X (i.e. a R b is never true) is not an equivalence relation, because although it is vacuously symmetric and transitive, it is not reflexive (except when X is also empty)
9. Given an arbitrary equivalence relation R in a set X, R divides X into mutually disjoint subsets S_{i} called partitions or subdivisions of X satisfying:

- All elements of S_{i} are related to each other, for all i
- No element of S_{i} is related to S_{j}, if $i \neq j$
- $\bigcup_{i=1}^{n} S_{\mathrm{j}}=\mathrm{X}$ and $S_{\mathrm{i}} \cap \mathrm{S}_{\mathrm{j}}=\phi$, if $\mathrm{i} \neq \mathrm{j}$

TOPPER

IMPORTANT FORMULAE

- The subsets S_{j} are called Equivalence classes.

10. A function from a non empty set A to another non empty set B is a correspondence or a rule which associates every element of A to a unique element of B written as $f: A \rightarrow B$ s.t $f(x)=y$ for all $x \in A, y \in B$. All functions are relations but converse is not true.
11. If $f: A \rightarrow B$ is a function then set A is the domain, set B is co-domain and set $\{f(x): x \in A\}$ is the range of f. Range is a subset of codomain.
12. $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is one-to-one if

For all $x, y \in A f(x)=f(y) \Rightarrow x=y$ or $x \neq y \Rightarrow f(x) \neq f(y)$
A one- one function is known as injection or an Injective Function.
Otherwise, f is called many-one.
13. $f: A \rightarrow B$ is an onto function, if for each $b \in B$ there is atleast one $a \in A$ such that $f(a)=b$
i.e if every element in B is the image of some element in A, f is onto.
14. A function which is both one-one and onto is called a bijective function or a bijection.
15. For an onto function range $=$ co-domain.
16. A one - one function defined from a finite set to itself is always onto but if the set is infinite then it is not the case.
17. Let $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ and $\mathrm{g}: \mathrm{B} \rightarrow \mathrm{C}$ be two functions. Then the composition of f and g, denoted by gof is defined as the function gof: $A \rightarrow C$ given by
$g o f(x): A \rightarrow C$ defined by $g o f(x)=g(f(x)) \forall x \in A$

Composition of f and g is written as gof and not fog
gof is defined if the range of $f \subseteq$ domain of f and $f o g$ is defined if range of $g \subseteq$ domain of f

TOPPER

IMPORTANT FORMULAE

18. Composition of functions is not commutative in general
fog $(x) \neq \operatorname{gof}(x)$.Composition is associative
If $f: X \rightarrow Y, g: Y \rightarrow Z$ and $h: Z \rightarrow S$ are functions then
$h o(g \circ f)=(h \circ g) \circ f$
19. A function $f: X \rightarrow Y$ is defined to be invertible, if there exists a function $\mathrm{g}: \mathrm{Y} \rightarrow \mathrm{X}$ such that gof $=\mathrm{I}_{\mathrm{X}}$ and $\mathrm{fog}=\mathrm{I}_{\mathrm{Y}}$. The function g is called the inverse of f and is denoted by f^{-1}
20. If f is invertible, then f must be one-one and onto and conversely, if f is one- one and onto, then f must be invertible.
21. If f: $A \rightarrow B$ and $g: B \rightarrow C$ are one-one and onto then gof: $A \rightarrow C$ is also one-one and onto. But If g of is one -one then only f is one -one g may or may not be one-one. If g of is onto then g is onto f may or may not be onto.
22. Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ and $\mathrm{g}: \mathrm{Y} \rightarrow \mathrm{Z}$ be two invertible functions. Then gof is also Invertible with $(\mathrm{gof})^{-1}=\mathrm{f}^{-1} \mathrm{og}^{-1}$.
23. If $f: R \rightarrow R$ is invertible, $f(x)=y$, then $f^{-1}(y)=x$ and $\left(f^{-1}\right)^{-1}$ is the function f itself.
24. A binary operation * on a set A is a function from $A X A$ to A.
25. Addition, subtraction and multiplication are binary operations on R, the set of real numbers. Division is not binary on R, however, division is a binary operation on $\mathrm{R}-\{0\}$, the set of non-zero real numbers
26.A binary operation $*$ on the set X is called commutative, if $a * b=$ $b * a$, for every $a, b \in X$
27.A binary operation $*$ on the set X is called associative, if $a *(b * c)=(a * b) * c$, for every $a, b, c \in X$
28.An element $e \in A$ is called an identity of A with respect to ${ }^{*}$, if for each $a \in A, a * e=a=e^{*} a$.
The identity element of $\left(A,{ }^{*}\right)$ if it exists, is unique.
29.Given a binary operation $*$ from $\mathrm{A} \times \mathrm{A} \rightarrow \mathrm{A}$, with the identity element e in A, an element $a \in A$ is said to be invertible with respect to the operation $*$, if there exists an element b in A such that $a * b=e=b * a$, then b is called the inverse of a and is denoted by a^{-1}.

IMPORTANT FORMULAE

30.If the operation table is symmetric about the diagonal line then, the operation is commutative.

The operation * is commutative.
31. Addition '+' and multiplication '.' on N , the set of natural numbers are binary operations But subtraction '-' and division are not since $(4,5)=4-5=-1 \notin N$ and $4 / 5=.8 \notin N$

Ch: INVERSE TRIGONOMETRY

Key Concepts

1. Inverse trigonometric functions map real numbers back to angles.
2. Inverse of sine function denoted by $\sin ^{-1}$ or $\operatorname{arc} \sin (x)$ is defined on $[-1,1]$ and range could be any of the intervals
$\left[\frac{-3 \pi}{2}, \frac{-\pi}{2}\right],\left[\frac{-\pi}{2}, \frac{\pi}{2}\right],\left[\frac{\pi}{2}, \frac{3 \pi}{2}\right]$.
3. The branch of $\sin ^{-1}$ function with range $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$ is the principal branch.

So $\sin ^{-1}:[-1,1] \rightarrow\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$
4. The graph of $\sin ^{-1} x$ is obtained from the graph of sine x by interchanging the x and y axes
5. Graph of the inverse function is the mirror image (i.e reflection) of the original function along the line $y=x$.
6. Inverse of cosine function denoted by $\cos ^{-1} \operatorname{or} \operatorname{arc} \cos (x)$ is defined in $[-1,1]$ and range could be any of the intervals $[-\pi, 0],[0, \pi],[\pi, 2 \pi]$.

So, $\cos ^{-1}:[-1,1] \rightarrow[0, \pi]$.
7. The branch of $\tan ^{-1}$ function with range $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$ is the principal branch. So $\tan ^{-1}: R \rightarrow\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$.

TOPPER

IMPORTANT FORMULAE

8. The principal branch of $\operatorname{cosec}^{-1} x$ is $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]-\{0\}$. $\operatorname{cosec}^{-1} x: R-(-1,1) \rightarrow\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]-\{0\}$.
9. The principal branch of $\sec ^{-1} x$ is $[0, \pi]-\left\{\frac{\pi}{2}\right\}$. $\sec ^{-1} x: R-(-1,1) \rightarrow[0, \pi]-\left\{\frac{\pi}{2}\right\}$.
10. $\cot ^{-1}$ is defined as a function with domain R and range as any of the intervals $(-\pi, 0),(0, \pi),(\pi, 2 \pi)$. The principal branch is $(0, \pi)$

So $\cot ^{-1}: R \rightarrow(0, \pi)$
11.The value of an inverse trigonometric function which lies in the range of principal branch is called the principal value of the inverse trigonometric functions.

Key Formulae:

1.Domain and range of Various inverse trigonometric Functions

Functions	Domain	Range (Principal Value Branches)
$y=\sin ^{-1} x$	$[-1,1]$	$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
$y=\cos ^{-1} x$	$[-1,1]$	$[0, \pi]$
$y=\operatorname{cosec}^{-1} x$	$R-(-1,1)$	$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]-\{0\}$
$y=\sec ^{-1} x$	$R-(-1,1)$	$[0, \pi]-\left\{\frac{\pi}{2}\right\}$
$y=\tan ^{-1} x$	R	$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
$y=\cot ^{-1} x$	R	$(0, \pi)$

2. Self Adjusting property

$\sin \left(\sin ^{-1} x\right)=x \quad ; \sin ^{-1}(\sin x)=x$
$\cos \left(\cos ^{-1} x\right)=x ; \cos ^{-1}(\cos x)=x$
$\tan \left(\tan ^{-1} \mathrm{x}\right)=\mathrm{x} ; \tan ^{-1}(\tan \mathrm{x})=\mathrm{x}$
Holds for all other five trigonometric ratios as well.

3. Reciprocal Relations

$\sin ^{-1}\left(\frac{1}{x}\right)=\operatorname{cosec}^{-1} x, x \geq 1$ or $x \leq-1$
$\cos ^{-1}\left(\frac{1}{x}\right)=\sec ^{-1} x, x \geq 1$ or $x \leq-1$
$\tan ^{-1}\left(\frac{1}{x}\right)=\cot ^{-1} x, x>0$
4. Even and Odd Functions
(i) $\sin ^{-1}(-x)=-\sin ^{-1}(x), x \in[-1,1]$
(ii) $\tan ^{-1}(-x)=-\tan ^{-1}(x), x \in R$
(iii) $\operatorname{cosec}^{-1}(-x)=-\operatorname{cosec}^{-1} x,|x| \geq 1$
(iv) $\cos ^{-1}(-x)=\pi-\cos ^{-1} x, x \in[-1,1]$
(v) $\sec ^{-1}(-x)=\pi-\sec ^{-1} x,|x| \geq 1$
(vi) $\cot ^{-1}(-x)=\pi-\cot ^{-1} x, x \in R$

5. Complementary Relations

(i) $\sin ^{-1} x+\cos ^{-1} x=\frac{\pi}{2}, x \in[-1,1]$
(ii) $\tan ^{-1} x+\cot ^{-1} x=\frac{\pi}{2}, x \in R$
(iii) $\operatorname{cosec}^{-1} x+\sec ^{-1} x=\frac{\pi}{2},|x| \geq 1$

TOPPER

IMPORTANT FORMULAE

6. Sum and Difference Formuale

(i) $\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right), x y<1$
(ii) $\tan ^{-1} x-\tan ^{-1} y=\tan ^{-1}\left(\frac{x-y}{1+x y}\right), x y>-1$
(iii) $\sin ^{-1} x+\sin ^{-1} y=\sin ^{-1}\left[x \sqrt{1-y^{2}}+y \sqrt{1-x^{2}}\right]$
(iv) $\sin ^{-1} x-\sin ^{-1} y=\sin ^{-1}\left[x \sqrt{1-y^{2}}-y \sqrt{1-x^{2}}\right]$
(v) $\cos ^{-1} x+\cos ^{-1} y=\cos ^{-1}\left[x y-\sqrt{1-x^{2}} \sqrt{1-y^{2}}\right]$
(vi) $\cos ^{-1} x-\cos ^{-1} y=\cos ^{-1}\left[x y+\sqrt{1-x^{2}} \sqrt{1-y^{2}}\right]$
(vii) $\cot ^{-1} x+\cot ^{-1} y=\cot ^{-1}\left(\frac{x y-1}{x+y}\right)$
(viii) $\cot ^{-1} x-\cot ^{-1} y=\cot ^{-1}\left(\frac{x y+1}{y-x}\right)$

7. Double Angle Formuale

(i) $2 \tan ^{-1} \mathrm{x}=\sin ^{-1} \frac{2 \mathrm{x}}{1+\mathrm{x}^{2}},|\mathrm{x}| \leq 1$
(ii) $2 \tan ^{-1} x=\cos ^{-1} \frac{1-x^{2}}{1+x^{2}}, x \geq 0$
(iii) $2 \tan ^{-1} x=\tan ^{-1} \frac{2 x}{1-x^{2}},-1<x<1$
(iv) $2 \sin ^{-1} x=\sin ^{-1}\left(2 x \sqrt{1-x^{2}}\right), \frac{-1}{\sqrt{2}} \leq x \leq \frac{1}{\sqrt{2}}$
(v) $2 \cos ^{-1} x=\sin ^{-1}\left(2 x \sqrt{\left.1-x^{2}\right)}, \frac{1}{\sqrt{2}} \leq x \leq 1\right.$

8. Conversion Properties

(i) $\sin ^{-1} \mathrm{x}=\cos ^{-1} \sqrt{1-\mathrm{x}^{2}}$

$$
=\tan ^{-1} \frac{x}{x \sqrt{1-x^{2}}}=\cot ^{-1} \frac{\sqrt{1-x^{2}}}{x}
$$

(ii) $\quad \cos ^{-1} x=\sin ^{-1} \sqrt{1-x^{2}}$

$$
=\tan ^{-1} \frac{\sqrt{1-x^{2}}}{x}=\cot ^{-1} \frac{x}{\sqrt{1-x^{2}}}
$$

(iii) $\tan ^{-1} x=\sin ^{-1}=\frac{x}{\sqrt{1-x^{2}}}$

$$
\begin{aligned}
& =\cos ^{-1} \frac{x}{\sqrt{1+x^{2}}}=\sec ^{2} \sqrt{1+x^{2}} \\
& =\operatorname{cosec}^{-1} \frac{\sqrt{1+x^{2}}}{x}
\end{aligned}
$$

Properties are valid only on the values of x for which the inverse functions are defined.

