Formulae of Algebra

S.No	Chapter	Formula	
1	Matrices	1.1	Types of matrices $A=\left[a_{i j}\right]_{\mathrm{mxn}}$ is a : - Diagonal matrix if $\mathrm{a}_{\mathrm{ij}}=0$, when $\mathrm{i} \neq \mathrm{j}$ - Square matrix if $m=n$ - Row matrix if $m=1$ - Column matrix if $n=1$ - Scalar matrix if $a_{i j}=0$, when $i \neq j, a_{i j}=k$, (some constant), when $i=j$ - Identity matrix if $a_{i j}=1$, when $i=j$ \& $a_{i j}=0$, when $i \neq j$ - Zero matrix if $\mathrm{a}_{\mathrm{ij}}=0$
		1.2	Operations on matrices - Addition of Matrices: $A=\left[a_{i j}\right]_{m \times n}$ and $B=\left[b_{i j}\right]_{m \times n}$ then their $\operatorname{sum} C=\left[c_{i j}\right]_{m \times n} c_{i j}=a_{i j}+b_{i j}$ for $1 \leq i \leq m, 1 \leq j \leq n$ - Scalar Multiplication: $A=\left[\mathrm{a}_{\mathrm{ij}}\right]_{\mathrm{m} \times \mathrm{n}}$ and k is a real number then $k A=\left[k a_{i j}\right]_{m \times n}$ - Negative of a matrix :-A $=(-1) \mathrm{A}$ - Difference of matrices: $A-B=A+(-1) B$ - Product of Matrices: If $A=\left[a_{i j}\right]_{m \times n}$ and B $=\left[b_{i k}\right]_{n \times p}$, then $A B=C=\left[c_{i k}\right]_{m \times p,}$ where $\mathrm{c}_{\mathrm{ik}}=\sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{ij}} \mathrm{b}_{\mathrm{ij}}$
		1.3	Properties of matrices - $-A=(-1) A$ (Negative of a matrix) - $A+B=B+A$ (Commutative Law of addition) - $A+(B+C)=(A+B)+C$ (Associative law of addition) - $k(A+B)=k A+k B$ (Multiplication by scalar)

			- $(k+L) A=k A+L A \quad$ (Multiplication by scalar) - $A B \neq B A$ in general - $A(B C)=(A B) C$ (Associative law of multiplication) - $A(B+C)=A B+A C$ (Distributive law) - $(A+B) C=A C+B C$ (Distributive law)
		1.4	Transpose of a Matrix $\mathrm{A}=\left[\mathrm{a}_{\mathrm{i}}\right]_{\mathrm{mxn}} \text { then } \mathrm{A}^{\prime} \text { or } \mathrm{A}^{\top}=\left[\mathrm{a}_{\mathrm{ji}}\right]_{\mathrm{nxm}}$
		1.5	Properties of transpose of a matrix - $\left(A^{\prime}\right)^{\prime}=A$ - $(k A)^{\prime}=k A^{\prime}$ - $(A+B)^{\prime}=A^{\prime}+B^{\prime}$ - $(A B)^{\prime}=B^{\prime} A^{\prime}$
		1.6	Inverse of a matrix If $A B=B A=I$, where $A \& B$ are square matrices, then $B=A^{-1}$ or $A=B^{-1} \&\left(A^{-1}\right)^{-1}=A$
		1.7	Symmetric \& Skew-symmetric matrices - $A=\left[a_{i j}\right]_{n \times n}$ is symmetric if $A=A^{\prime}$ i.e $\mathrm{a}_{\mathrm{ij}}=\mathrm{a}_{\mathrm{ji}}$ for all i and j - $A=\left[a_{i j}\right]_{n x n}$ is skew symmetric if $A^{\prime}=-A$ i.e If $\mathrm{i}=\mathrm{j}$, then $\mathrm{a}_{\mathrm{ij}}=-\mathrm{a}_{\mathrm{ij}} \Rightarrow \mathrm{a}_{\mathrm{ij}}=0$ - $\quad A=\frac{1}{2}\left(A+A^{\top}\right)+\frac{1}{2}\left(A-A^{\top}\right)$ Symmetric part of $A=\frac{1}{2}\left(A+A^{\top}\right)$ Skew symmetric part of $A=\frac{1}{2}\left(A-A^{\top}\right)$
		1.8	Elementary operations of a matrix are as follows: i. $\quad R_{i} \leftrightarrow R_{j}$ or $C_{i} \leftrightarrow C_{j}$ ii. $\mathrm{R}_{\mathrm{i}} \rightarrow \mathrm{kR}_{\mathrm{i}}$ or $\mathrm{C}_{\mathrm{i}} \rightarrow \mathrm{kC} \mathrm{C}_{\mathrm{i}}$

			iii. $\mathrm{R}_{\mathrm{i}} \rightarrow \mathrm{R}_{\mathrm{i}}+\mathrm{kR} \mathrm{f}_{\mathrm{j}}$ or $\mathrm{C}_{\mathrm{i}} \rightarrow \mathrm{C}_{\mathrm{i}}+\mathrm{kC} \mathrm{C}_{j}$
2	Determinants	2.1	Determinant of order 2 If $A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$ then, $\|A\|=\left\|\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right\|=a_{11} a_{22}-a_{12} a_{21}$
		2.2	Determinant of order 3 $\begin{aligned} & \text { If } A=\left[\begin{array}{lll} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array}\right] \text { then } \\ & \|A\|=\left\|\begin{array}{lll} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array}\right\| \\ & =a_{11}\left\|\begin{array}{ll} a_{22} & a_{23} \\ a_{32} & a_{33} \end{array}\right\|-a_{12}\left\|\begin{array}{ll} a_{21} & a_{23} \\ a_{31} & a_{33} \end{array}\right\|+a_{13}\left\|\begin{array}{ll} a_{21} & a_{22} \\ a_{31} & a_{32} \end{array}\right\| \end{aligned}$
		2.2	Properties of determinants For any square matrix A - $\left\|A^{\prime}\right\|=\|A\|$, where $A^{\prime}=$ transpose of A - If any two rows (or columns) of a determinant are interchanged, then sign of determinant changes. - If any two rows (or columns) are identical or proportional then the value of determinant is 0 . - If each element of a row (or column) of a determinant is multiplied by a constant k , then its value gets multiplied by k. - Multiplying a determinant by k means multiply each element of one row (or column) by k. - If $A=\left[a_{i j}\right]_{n \times n}$, then $\|k \cdot A\|=k^{n} A$ - If elements of a row (or column) can be expressed as sum of two or more elements then the determinant can be expressed as

		- If to each element of a row (or column) of a determinant the equi-multiples of corresponding elements of other two rows or columns are added, then the value of determinant remains same. - A has inverse if and only if A is nonsingular - Value of determinant is equal to the sum of product of element of a row (or a column) with its corresponding cofactors. - If elements of one row (or column) are multiplied with cofactors of elements of any other row (or column), then their sum is 0 . $a_{11} A_{21}+a_{12} A_{22}+a_{13} A_{23}=0$, $\|A B\|=\|A\|\|B\|$,
	2.3	Minors \& Cofactors - Minor of an element a_{ij} of the determinant of matrix A is the determinant obtained by deleting the $i^{\text {th }}$ row $\& j^{\text {th }}$ column denoted by M_{ij} - Cofactor of $a_{i j}$ is $A_{i j}=(-1)^{i+j} M_{i j}$
	2.5	Adjoint \& Inverse of a Matrix - If $A=\left[\begin{array}{cc}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$ then $\operatorname{adj} . A=$ $=\left[\begin{array}{ll} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array}\right]$ Change Sign Interchange - If $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$, then $\operatorname{adj} A=\left[\begin{array}{ccc}A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33}\end{array}\right]$ where, A_{ij} are cofactors of a_{ij} - $A^{-1}=\frac{1}{\|A\|}(\operatorname{adj} A)$ - $A(\operatorname{adj} A)=(\operatorname{adj} A) A=\|A\| I$ - If A is a non singular matrix of order n then $\|\operatorname{adj} A\|=\|A\|^{n-1}$

