

Formulae of Differential Calculus

S.No	Chapter	Form	nula
1	Continuity & Differentiability	1.1	 Continuity of a function A function f(x) is said to be continuous at a point c if, lim f(x) = lim f(x) = f(c) x→c⁻ x→c⁺
		1.2	Algebra of Continuous Functions If f and g are continuous functions, then $(f \pm g)(x) = f(x) \pm g(x) \text{ is continuous}$ $(f.g)(x) = f(x).g(x) \text{ is continuous}$ $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}(\text{where } g(x) \neq 0) \text{ is continuous}$
		1.3	 Differentiability of a function A function f is differentiable at a point c If, LHD=RHD i.e lim f(c+h) - f(c) h = lim f(c+h) - f(c) h Derivative of a function f is f'(x) which is f'(x) = lim f(x+h) - f(x) h Every differentiable function is continuous, but converse is not true.
		1.3	Algebra of Derivatives If u & v are two functions which are differentiable, then ■ (u ± v)' = u'± v' ■ (uv)' = u'v + uv' (Product rule) ■ (u/v) = u'v - uv' (Quotient rule)
		1.4	Derivatives of Functions $\frac{d}{dx}x^n = nx^{n-1}$

	$ \frac{d}{dx}(\cos x) = -\sin x $
	$\frac{dx}{dx}(\cot x) = -\cos \sec^2 x$
	$ \frac{d}{dx}(s ecx) = sec x tan x $
	$\frac{dx}{dx}(\cos \sec x) = -\cos \sec x \cot x$
	$\frac{dx}{dx} \left(\sin^{-1} x \right) = \frac{1}{\sqrt{1 - x^2}}$
	V = X
	$\frac{d}{dx}(\cos^{-1}x) = -\frac{1}{\sqrt{1-x^2}}$
	$\frac{d}{dx}\left(\cot^{-1}x\right) = -\frac{1}{1+x^2}$
	$ \frac{d}{dx} \left(\cos \sec^{-1} x \right) = \frac{-1}{x\sqrt{x^2 - 1}} $
	$\frac{dx}{dx} \left(e^{x} \right) = e^{x}$
	$\frac{dx}{dx}(\log x) = \frac{1}{x}$
	ux x
1.5	Chain Rule
	If $f = v \circ u$, $t = u(x) \& if both \frac{dt}{dx} and \frac{dv}{dx},$
	exists then, df _ dv dt
	$\frac{dx}{dx} = \frac{dt}{dt} \cdot \frac{dx}{dx}$
1.6	Implicit Functions If it is not possible to "separate" the variables
	x & y then function f is known as implicit function.

1.7	Logarithms	5

$$\log(xy) = \log x + \log y$$

$$\log\left(\frac{x}{y}\right) = \log x - \log y$$

$$log(x^y) = y log x$$

$$\log_a x = \frac{\log_b x}{\log_b a}$$

1.8 Logarithmic Differentiation

Differentiation of $y=a^x$

Taking logarithm on both sides

$$\log y = \log a^x.$$

Using property of logarithms

$$\log y = x \log a$$

Now differentiating the implicit function

$$\frac{1}{y} \cdot \frac{dy}{dx} = \log a$$

$$\frac{dy}{dx} = y \log a = a^x \log a$$

1.9 Parametric Differentiation

Functions of the form x = f(t) and y = g(t) are parametric functions.

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$$
$$\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx}$$

1.1 Mean Value Theorems 0

- Rolle's Theorem: If f: [a, b] → R is continuous on [a, b] and differentiable on (a, b) such that f (a) = f (b), then there exists some c in (a, b) such that f'(c) = 0
- Mean Value Theorem: If f:[a, b] → R is continuous on [a, b] & differentiable on (a, b). Then there exists some c in (a, b) such that f'(c) = lim_{h→0} f(b) f(a)/b a

2	Application of derivatives	2.1	Increasing & Decreasing functions Let I be an open interval contained in domain of a real valued function f. Then f is said to be: Increasing on I if $x_1 < x_2$ in I $\Rightarrow f(x_1) \le f(x_2) \text{ for all } x_1, x_2 \in I$ Strictly increasing on I if $x_1 < x_2$ in I $\Rightarrow f(x_1) < f(x_2) \text{ for all } x_1, x_2 \in I$ Decreasing on I if $x_1 < x_2$ in I $\Rightarrow f(x_1) \ge f(x_2) \text{ for all } x_1, x_2 \in I$ Strictly decreasing on I if $x_1 < x_2$ in I $\Rightarrow f(x_1) \ge f(x_2) \text{ for all } x_1, x_2 \in I$
			Theorem: Let f be a continuous function on [a,b] and differentiable on (a,b). Then (a)f is increasing in[a,b] if $f'(x) > 0$ for each $x \in (a,b)$ (b) f is decreasing in[a,b] if $f'(x) < 0$ for each $x \in (a,b)$ (c) f is constant in[a,b] if $f'(x) = 0$ for each $x \in (a,b)$
		2.3	 Tangents & Normals The equation of the tangent at (x₀, y₀) to the curve y = f (x) is: y - y₀ = f '(x₀)(x - x₀) Slope of a tangent = dy/dx = tanθ The equation of the normal to the curve y = f (x) at (x₀, y₀) is: (y-y₀)f'(x₀)+(x-x₀)= 0 Slope of Normal = -1/slope of the tangent
		2.4	First Derivative Test Let f be a function defined on an open interval I. Let f be continuous at a critical point c in I. Then If f '(x) > 0 at every point sufficiently

	 close to and to the left of c & f '(x) < 0 at every point sufficiently close to and to the right of c, then c is a point of local maxima. If f '(x) < 0 at every point sufficiently close to and to the left of c, f '(x) > 0 at every point sufficiently close to and to the right of c, then c is a point of local minima. If f '(x) does not change sign as x increases through c, then point c is called point of inflexion
2.5	
	Let f be a function defined on an interval I & c ∈ I. Let f be twice differentiable at c. Then x = c is a point of local maxima if f '(c) = 0 & f "(c) < 0. x = c is a point of local minima if f'(c) = 0 and f "(c) > 0 The test fails if f '(c) = 0 & f "(c) = 0. By first derivative test, find whether c is a point of maxima, minima or a point of inflexion.
2.6	 Differential Approximations Let y =f(x), Δx be small increments in x and Δy be small increments in y corresponding to the increment in x,i.e., Δy = f(x+Δx)-f(x). Then
	$\Delta y = \left(\frac{dy}{dx}\right) \Delta x \text{ or } dy = \left(\frac{dy}{dx}\right) \Delta x$ $\Delta y \approx dy \text{ and } \Delta x \approx dx$