Formulae of Differential Calculus

S.No	Chapter	Formula	
1	Continuity \& Differentiability	1.1	Continuity of a function - A function $f(x)$ is said to be continuous at a point c if, $\lim _{x \rightarrow c^{-}} f(x)=\lim _{x \rightarrow c^{+}} f(x)=f(c)$
		1.2	Algebra of Continuous Functions If f and g are continuous functions, then - $(f \pm g)(x)=f(x) \pm g(x)$ is continuous - $(f . g)(x)=f(x) . g(x)$ is continuous - $\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}($ where $g(x) \neq 0)$ is continuous
		1.3	Differentiability of a function - A function f is differentiable at a point c If, LHD=RHD $\text { i.e } \lim _{h \rightarrow 0^{-}} \frac{f(c+h)-f(c)}{h}=\lim _{h \rightarrow 0^{+}} \frac{f(c+h)-f(c)}{h}$ - Derivative of a function f is $f^{\prime}(x)$ which is $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ - Every differentiable function is continuous, but converse is not true.
		1.3	Algebra of Derivatives If $u \& v$ are two functions which are differentiable, then - $(u \pm v)^{\prime}=u^{\prime} \pm v^{\prime}$ - (uv)' = u'v + uv' (Product rule) - $\left(\frac{u}{v}\right)^{\prime}=\frac{u^{\prime} v-u v^{\prime}}{v^{2}}$ (Quotient rule)
		1.4	Derivatives of Functions - $\frac{d}{d x} x^{n}=n x^{n-1}$

			- $\frac{d}{d x}(\sin x)=\cos x$ - $\frac{d}{d x}(\cos x)=-\sin x$ - $\frac{d}{d x}(\tan x)=\sec ^{2} x$ - $\frac{d}{d x}(\cot x)=-\operatorname{cosec}^{2} x$ - $\frac{d}{d x}(\sec x)=\sec x \tan x$ - $\frac{d}{d x}(\operatorname{cosec} x)=-\operatorname{cosec} x \cot x$ - $\frac{d}{d x}\left(\sin ^{-1} x\right)=\frac{1}{\sqrt{1-x^{2}}}$ - $\frac{d}{d x}\left(\cos ^{-1} x\right)=-\frac{1}{\sqrt{1-x^{2}}}$ - $\frac{d}{d x}\left(\tan ^{-1} x\right)=\frac{1}{1+\mathrm{x}^{2}}$ - $\frac{d}{d x}\left(\cot ^{-1} x\right)=-\frac{1}{1+x^{2}}$ - $\frac{d}{d x}\left(\sec ^{-1} x\right)=\frac{1}{x \sqrt{x^{2}-1}}$ - $\frac{d}{d x}\left(\operatorname{cosec}^{-1} x\right)=\frac{-1}{x \sqrt{x^{2}-1}}$ - $\frac{d}{d x}\left(e^{x}\right)=e^{x}$ - $\frac{d}{d x}(\log x)=\frac{1}{x}$
		1.5	Chain Rule If $\mathrm{f}=\mathrm{vou}, \mathrm{t}=\mathrm{u}(\mathrm{x}) \&$ if both $\frac{\mathrm{dt}}{\mathrm{dx}}$ and $\frac{\mathrm{dv}}{\mathrm{dx}}$, exists then, $\frac{d f}{d x}=\frac{d v}{d t} \cdot \frac{d t}{d x}$
		1.6	Implicit Functions If it is not possible to "separate" the variables $x \& y$ then function f is known as implicit function.

		1.7	Logarithms $\begin{aligned} & \log (x y)=\log x+\log y \\ & \log \left(\frac{x}{y}\right)=\log x-\log y \\ & \log \left(x^{y}\right)=y \log x \\ & \log _{a} x=\frac{\log _{b} x}{\log _{b} a} \end{aligned}$
		1.8	Logarithmic Differentiation Differentiation of $y=a^{x}$ Taking logarithm on both sides $\log y=\log a^{x}$ Using property of logarithms $\log y=x \log a$ Now differentiating the implicit function $\begin{aligned} & \frac{1}{y} \cdot \frac{d y}{d x}=\log a \\ & \frac{d y}{d x}=y \log a=a^{x} \log a \end{aligned}$
		1.9	Parametric Differentiation Functions of the form $x=\mathrm{f}(\mathrm{t})$ and $\mathrm{y}=\mathrm{g}(\mathrm{t})$ are parametric functions. $\begin{aligned} & \frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}} \\ & \frac{d y}{d x}=\frac{d y}{d t} \times \frac{d t}{d x} \end{aligned}$
		$\begin{aligned} & \hline 1.1 \\ & 0 \end{aligned}$	Mean Value Theorems - Rolle's Theorem: If $\mathrm{f}:[\mathrm{a}, \mathrm{b}] \rightarrow \mathbf{R}$ is continuous on [a, b] and differentiable on (a, b) such that $f(a)=f(b)$, then there exists some c in (a, b) such that $\mathrm{f}^{\prime}(\mathrm{c})=0$ - Mean Value Theorem: If $f:[a, b] \rightarrow \mathbf{R}$ is continuous on [a, b] \& differentiable on (a, b). Then there exists some c in (a, b) such that $f^{\prime}(c)=\lim _{h \rightarrow 0} \frac{f(b)-f(a)}{b-a}$

IMPORTANT FORMULAE

2	Application of derivatives	2.1	Increasing \& Decreasing functions Let I be an open interval contained in domain of a real valued function f. Then f is said to be: - Increasing on I if $x_{1}<x_{2}$ in I $\Rightarrow f\left(x_{1}\right) \leq f\left(x_{2}\right) \text { for all } x_{1}, x_{2} \in I$ - Strictly increasing on I if $x_{1}<x_{2}$ in I $\Rightarrow f\left(x_{1}\right)<f\left(x_{2}\right) \text { for all } x_{1}, x_{2} \in I$ - Decreasing on I if $x_{1}<x_{2}$ in I $\Rightarrow f\left(x_{1}\right) \geq f\left(x_{2}\right) \text { for all } x_{1}, x_{2} \in I$ - Strictly decreasing on I if $x_{1}<x_{2}$ in I $\Rightarrow f\left(x_{1}\right)>f\left(x_{2}\right) \text { for all } x_{1}, x_{2} \in I$ Theorem: Let f be a continuous function on [a,b] and differentiable on (a, b).Then (a)f is increasing in $[a, b]$ if $f^{\prime}(x)>0$ for each $x \in(a, b)$ (b) f is decreasing in $[a, b]$ if $f^{\prime}(x)<0$ for each $x \in(a, b)$ (c) f is constant in $[a, b]$ if $f^{\prime}(x)=0$ for each $x \in(a, b)$
		2.3	Tangents \& Normals - The equation of the tangent at $\left(x_{0}, y_{0}\right)$ to the curve $y=f(x)$ is: $y-y_{0}=f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)$ - Slope of a tangent $=\frac{d y}{d x}=\tan \theta$ - The equation of the normal to the curve $y=f(x)$ at $\left(x_{0}, y_{0}\right)$ is: $\left(y-y_{0}\right) f^{\prime}\left(x_{0}\right)+\left(x-x_{0}\right)=0$ - Slope of Normal $=\frac{-1}{\text { slope of the tangent }}$
		2.4	First Derivative Test Let f be a function defined on an open interval I. Let f be continuous at a critical point c in I. Then - If $f^{\prime}(x)>0$ at every point sufficiently

			close to and to the left of c \& $\mathrm{f}^{\prime}(\mathrm{x})<0$ at every point sufficiently close to and to the right of c , then c is a point of local maxima. - If $f^{\prime}(x)<0$ at every point sufficiently close to and to the left of $c, f^{\prime}(x)>0$ at every point sufficiently close to and to the right of c , then c is a point of local minima. - If $f^{\prime}(x)$ does not change sign as x increases through c, then point c is called point of inflexion
		2.5	Second Derivative test Let f be a function defined on an interval I \& $\mathrm{c} \in \mathrm{I}$. Let f be twice differentiable at c . Then - $x=c$ is a point of local maxima if $f^{\prime}(c)$ $=0 \& f^{\prime \prime}(c)<0$. - $x=c$ is a point of local minima if $f^{\prime}(c)$ $=0$ and f " $(\mathrm{c})>0$ - The test fails if $f^{\prime}(c)=0 \& f^{\prime \prime}(c)=0$. By first derivative test, find whether c is a point of maxima, minima or a point of inflexion.
		2.6	Differential Approximations - Let $y=f(x), \Delta x$ be small increments in x and Δy be small increments in y corresponding to the increment in x,i.e., $\Delta y=f(x+\Delta x)-f(x)$. Then $\begin{aligned} & \Delta y=\left(\frac{d y}{d x}\right) \Delta x \text { or } d y=\left(\frac{d y}{d x}\right) \Delta x \\ & \Delta y \approx d y \text { and } \Delta x \approx d x \end{aligned}$

