(1) Find the area of the region bounded by the circle $x^{2}+y^{2}=r^{2}$.
[Ans: $\pi \mathbf{r}^{2}$]
(2) Find the area of the region bounded by $y=x^{2}-5 x+4$ and X-axis.
$\left[\right.$ Ans: $\left.\frac{9}{2}\right]$
(3) Find the area of the region enclosed by $y^{2}=8 x$ and $x+y=0$.
$\left[\right.$ Ans: $\left.\frac{32}{3}\right]$
(4) Find the area of the region between the circles, $x^{2}+y^{2}=4$ and $x^{2}+y^{2}=4 x$.
$\left[\right.$ Ans: $\left.\frac{8 \pi}{3}-2 \sqrt{3}\right]$
(5) Prove that the area of the region bounded by $y=4 x-x^{2}$ and x-axis is $\frac{32}{3}$.
(6) Find the volume of the solid obtained by revolution of portion of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ on right hand semi plane of Y-axis about Y-axis.
$\left[\right.$ Ans: $\left.\frac{4}{3} \pi \mathrm{a}^{2} \mathrm{~b}\right]$
(7) If the region bounded by $y^{2}=8 x$ from its vertex to $x=2$ is rotated about X-axis, find the volume of the solid generated.
[Ans: 16π]
(8) Prove that the volume of the solid generated by revolving the region bounded by $y=x^{2}+1$ and $y=2 x+1$ about X-axis is $\frac{104 \pi}{15}$.
(9) Find the volume of the right circular cone having semi-vertical angle α and radius of base equal to r.
$\left[\right.$ Ans : $\left.\frac{1}{3} \pi r^{3} \cot \alpha\right]$
(10) Line $x=c$ divides the area of the region bounded by $y^{2}=4 x$ and $x=16$ in two regions having equal areas. Find c.
$\left[\right.$ Ans : $\left.2^{\frac{10}{3}}\right]$
(11) Find the area of the region bounded by $y=x^{2}$ and the line $y=x+2$.
$\left[\right.$ Ans: $\left.\frac{9}{2}\right]$
(12) Find the area of the region bounded by $y=5 x^{2}$ and $2 x^{2}-y+9=0$.
[Ans: $12 \sqrt{3}$]
(13) The region bounded by $y=2 x^{2}$, X-axis and $x=5$ is rotated about Y-axis. Find the volume of the solid generated.
[Ans: 625π]
(14) Find the volume of the solid generated when the region bounded by $y=x^{2}$ and $y=4 x-x^{2}$ is rotated about X-axis.
$\left[\right.$ Ans: $\left.\frac{32 \pi}{3}\right]$
(15) If the region bounded by $x^{2}-y^{2}=a^{2}, x=a$ and $x=2 a$ is rotated about Y - $a x i s$, find the volume of the solid of revolution.
[Ans: $4 \sqrt{3} \pi \mathrm{a}^{3}$]
(16) Prove that the area of the region enclosed by the circle $x^{2}+y^{2}=64$ and parabola $y^{2}=12 x$ is $\frac{16}{3}(4 \pi+\sqrt{3})$.
(17) Prove that the area of the region bounded by $x=6+4 y-y^{2}$ and $\overleftrightarrow{A B}$ where A is $(4,3)$ and B is $(-10,-4)$ is 36.
(18) The region bounded by $y=4 x-x^{2}, x=1, x=3$ and X-axis is divided into two parts with equal area by $x=c$. Find c.
[Ans: 2]
(19) Obtain the area of the minor segment bounded by the circle $x^{2}+y^{2}=a^{2}$ and the line $x=\frac{a}{\sqrt{2}}$.
$\left[\right.$ Ans: $\left.\frac{a^{2}}{4}(\pi-2)\right]$
(20) Find the area of the region bounded by $y=x^{2}$ and $y=2-x$.
$\left[\right.$ Ans: $\left.\frac{9}{2}\right]$
(21) Obtain the area of the region bounded by the line through $A(3,2)$ and $B(1,1)$ and the curve $x=y^{2}+y-1$.
$\left[\right.$ Ans: $\left.\frac{1}{6}\right]$
(22) Obtain the area of the region bounded by the curve $y=x^{2}+1$ and the line passing through (0,1) and (2,5).
$\left[\right.$ Ans: $\left.\frac{4}{3}\right]$
(23) Obtain the area of the region bounded by the curves $y^{2}=4 x$ and $x^{2}=4 y$.
$\left[\right.$ Ans: $\left.\frac{16}{3}\right]$
(24) Obtain the area of the region bounded between the circle $x^{2}+y^{2}=4$ and the parabola $y^{2}=3 x$.
$\left[\right.$ Ans : $\frac{1}{3}(4 \pi+\sqrt{3}]$
(25) Obtain the area of the region enclosed between the parabolas $y=6 x-x^{2}$ and $y=x^{2}-2 x$.
$\left[\right.$ Ans: $\left.\frac{64}{3}\right]$
(26) Obtain the volume of the solid surface generated on rotating the region bounded by the parabola $y=x^{2}$ and $y=4 x-x^{2}$, about the X-axis.
$\left[\right.$ Ans: $\left.\frac{32 \pi}{3}\right]$
(27) Show that the volume of the segment of a sphere with radius a between two parallel planes on one side of the centre at a distance r_{1} and r_{2} from the centre $\left(r_{1}<r_{2}\right)$ is $\frac{\pi}{3}\left(r_{2}-r_{1}\right)\left[3 a^{2}-\left(r_{1}{ }^{2}+r_{1} r_{2}+r_{2}{ }^{2}\right)\right]$.
(28) Obtain the area of the region enclosed between $y^{2}=4 x-4$ and $y^{2}=-4 x+4$.
$\left[\right.$ Ans : $\left.\frac{16}{3}\right]$
(29) Obtain area of the region enclosed between the parabola $y^{2}=4(x-2)$, the line $y=x-1$ and the X-axis.
$\left[\right.$ Ans: $\left.\frac{2}{3}\right]$
(30) Find the volume of the solid generated on rotating the region bounded by the curve $y=x^{2}+1$ and the line $y=2 x+4$, about the X-axis.
$\left[\right.$ Ans: $\left.\frac{1408 \pi}{15}\right]$
(31) Find the volume of the solid generated on rotating the region bounded by $y^{2}=x^{3}$, $\mathrm{x}=2$ and the X -axis about the X -axis.
[Ans: 4π]
(32) Find the volume of the solid generated on rotating the region bounded by the curve $y=a\left(\sin x+\frac{\sin 3 x}{3}\right)$, the X-axis and the lines $x=0$ and $x=\pi$ about the X-axis. $\left[\right.$ Ans: $\left.\frac{5 \pi^{2} \mathrm{a}^{2}}{9}\right]$
(33) Find the common area enclosed between the ellipses $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and $\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1$ ($\mathrm{a}>\mathrm{b}$).
$\left[\right.$ Ans : $\left.2 a b\left(\pi-2 \sin ^{-1} \frac{a}{\sqrt{a^{2}+b^{2}}}\right)\right]$

