Solve all problems vectorially:

(1) Obtain the unit vectors perpendicular to each of $\bar{x}=(1,2,-1)$ and $\bar{y}=(1,0,2)$. $\left[\right.$ Ans : $\left.\pm\left(\frac{4}{\sqrt{29}}, \frac{-3}{\sqrt{29}}, \frac{-2}{\sqrt{29}}\right)\right]$
(2) If α is the angle between two unit vectors \bar{a} and \bar{b}, then prove that $|\overline{\mathrm{a}}-\overline{\mathrm{b}} \cos \alpha|=\sin \alpha$.
(3) If a vector \bar{r} makes with X-axis and Y-axis angles of measures 45° and 60° respectively, then find the measure of the angle which $\overline{\mathrm{r}}$ makes with Z-axis.
[Ans: 60° or 120°]
(4) If \bar{x} and \bar{y} are non-collinear vectors of R^{3}, then prove that \bar{x}, \bar{y} and $\bar{x} \times \bar{y}$ are non-coplanar.
(5) If the measure of angle between $\bar{x}=\bar{i}+\bar{j}$ and $\bar{y}=t \bar{i}-\bar{j}$ is $\frac{3 \pi}{4}$, then find \mathbf{t}. [Ans: 0]
(6) Show that for any $a \in R$, the directions (2, 3, 5) and (a, a+1, a+2) cannot be the same or opposite.
(7) If θ is a measure of angle between unit vectors $\overline{\mathbf{a}}$ and $\overline{\mathbf{b}}$, prove that $\sin \frac{\theta}{2}=\frac{1}{2}$ । $\overline{\mathrm{a}}-\overline{\mathrm{b}}$.
(8) If \bar{x}, \bar{y} and \bar{z} are non-coplanar, prove that $\bar{x}+\bar{y}, \bar{y}+\bar{z}$ and $\bar{z}+\bar{x}$ are also non-coplanar.
(9) Show that the vectors (1, 2, 1), (1, 1, 4) and (1, 3, 2) are coplanar. Also express each of these vectors as a linear combination of the other two.
$\left[\begin{array}{rl}\text { Ans }:(1,2,1) & =\frac{1}{2}(1,1,4)+\frac{1}{2}(1,3,-2) ; \quad(1,1,4)=2(1,2,1)-(1,3,-2) ; \\ (1,3,-2) & =2(1,2,1)-(1,1,4)\end{array}\right]$
[Note: These vectors are collinear besides being coplanar. Hence, any vector of \mathbf{R}^{3} which is not collinear with them cannot be expressed as a linear combination of these vectors even if it is coplanar with them.]
(10) Show that $(1,1,0),(1,0,1)$ and $(0,1,1)$ are non-coplanar vectors. Also express any vector (x, y, z) of R^{3} as a linear combination of these vectors.
$\left[\right.$ Ans : $\left.(x, y, z)=\frac{x+y-z}{2}(1,1,0)+\frac{x-y+z}{2}(1,0,1)+\frac{y+z-x}{2}(0,1,1)\right]$
(11) Prove that an angle in a semi-circle is a right angle.
(12) Prove that the three altitudes in a triangle are concurrent.
(13) If $A=P-B$ and $\frac{A P}{P B}=\frac{m}{n}$, then prove that for any point O in space, $n(\overrightarrow{O A})+m(\overrightarrow{O B})=(m+n) \overrightarrow{O P}$.
(14) Prove that $A(1,5,6), B(3,1,2)$ and $C(4,-1,0)$ are collinear. Find also the ratio in which A divides $\overline{B C}$ from B.
[Ans: -2 : 3]
(15) Find in which ratio and at which point does the $X Y$-plane divide $\overline{A B}$ where A is $(2,-2,1)$ and B is $(1,4,-5)$.
$\left[\right.$ Ans: $1: 5$ from A at $\left.\left(\frac{11}{6},-1,0\right)\right]$

www.schootnotes 4 w.com

(16) If $A(0,-1,-1), B(16,-3,-3)$ and $C(-8,-1,-2)$ are given points, then find the point $D(x, y, z)$ in space so that $\overrightarrow{A B}=\overrightarrow{C D}$.
[Ans: (8, - 3, - 4)]
(17) $A(0,-1,-4), B(1,2,3)$ and $C(5,4,-1)$ are given points. If D is the foot of perpendicular from A on $\overline{B C}$, find its position vector.
[Ans: (3, 3, 1)]
(18) If the position vectors A, B, C of triangle $A B C$ are $\bar{a}, \bar{b}, \bar{c}$ respectively, then show that the area of triangle $A B C=\frac{1}{2}|(\bar{a} \times \bar{b})+(\bar{b} \times \bar{c})+(\bar{c} \times \bar{a})|$.
(19) Find the volume of a prism having a vertex at origin O and having coterminous edges $\overline{O A}, \overline{O B}, \overline{O C}$, where A is $(4,3,1), B$ is $(3,1,2)$ and C is $(5,2,1)$.
[Ans: 10 cubic units]
(20) Find the volume of tetrahedron having vertices $\mathrm{V}(1,1,3), \mathrm{A}(4,3,2), \mathrm{B}(5,2,7)$ and $C(6,4,8)$.
$\left[\right.$ Ans: $\frac{14}{3}$ cubic units $]$
(21) If the forces of magnitudes $\sqrt{2}, 2$ and $\sqrt{3}$ units are applied to a particle in the directions of vectors $(-1,0,1),(1,0,1)$ and (1, 1, -1) respectively, then find the magnitude and direction of the resultant force.
$\left[\right.$ Ans : $\left.\sqrt{5},\left(\cos ^{-1} \sqrt{\frac{2}{5}}, \cos ^{-1} \sqrt{\frac{1}{5}}, \cos ^{-1} \sqrt{\frac{2}{5}}\right)\right]$
(22) A boat is sailing to the east with a speed of $10 \sqrt{2} \mathrm{~km} / \mathrm{hr}$. A man on boat feels that the wind is blowing from the south-east with a speed of $5 \mathrm{~km} / \mathrm{hr}$. Find the true velocity of the wind.
[Ans : $5 \sqrt{5} \mathrm{~km} / \mathrm{hr}$ at an angle $\cos ^{-1} \frac{3}{\sqrt{10}}$ with east towards north]

www.schootnotes4w.com

(23) A force of magnitude $2 \sqrt{10}$ units is acting on a particle in the direction $3 \bar{i}-\bar{j}$ and a force of magnitude $3 \sqrt{13}$ units is acting on the same particle in the direction $2 \bar{i}+3 \bar{j}$. Under the influence of these forces, the particle is displaced from $A(1,2)$ to $B(6,4)$. Find the work done.
[Ans: 74 units]
(24) Prove that the diagonals of a rhombus bisect each other orthogonally.
(25) If a pair of medians of a triangle are equal, then show that the triangle is isosceles.
(26) Show that the perpendicular bisectors of sides of any triangle are concurrent.
(27) Prove that the diagonals of a rhombus are bisectors of its angles.
(28) If $\overrightarrow{A D}$ is a bisector of $\angle B A C$ in triangle $A B C$ and if $D \in B C$, then show that $\frac{B D}{D C}=\frac{A B}{A C}$.
(29) $A B C D E F$ is a regular hexagon. Prove that $\overrightarrow{A B}+\overrightarrow{A C}+\overrightarrow{A D}+\overrightarrow{A E}+\overrightarrow{A F}=3 \overrightarrow{A D}$.
(30) Show that centroid and in-centre of an equilateral triangle are the same. Find the incentre of the triangle with vertices (6, 4, 6), (12, 4, 0) and (4, 2, -2).
$\left[\right.$ Ans: $\left.\left(\frac{22}{3}, \frac{10}{3}, \frac{4}{3}\right)\right]$
(31) If A is $(1,2,1)$ and B is $(4,-1,2)$, then find $S(x, y, z)$ such that $2 \overrightarrow{A B}=\overrightarrow{A S}$.
[Ans: (7, - 4, 3)]
(32) Let $A(1,2,-1)$ and $B(3,2,2)$ be given points. Find in which ratios from A and at which points do the $X Y$-, $Y Z$ - and $Z X$-planes divide $\overline{\mathrm{AB}}$.
[Ans: $1: 2,\left(\frac{5}{3}, 2,0\right) ;-1: 3,\left(0,2, \frac{5}{2}\right) ; \overleftrightarrow{A B}$ is parallel to ZX -plane $]$
(33) Show that $(6,0,1),(8,-3,7)$ and $(2,-5,10)$ can be three vertices of some rhombus. Find the co-ordinates of the fourth vertex of this rhombus.
[Ans: (0, - 2, 4)]
(34) Show that (1, 2, 4), (-1, 1, 1), (6, 3, 8) and (2, 1, 2) are the vertices of a trapezium. Find the area of this trapezium.
$\left[\right.$ Ans : $\left.\frac{3}{2} \sqrt{59}\right]$
(35) Find the area of the parallelogram $A B C D$ if $\overrightarrow{A C}=\overline{\mathbf{a}}$ and $\overrightarrow{B D}=\overline{\mathbf{b}}$.
$\left[\right.$ Ans: $\left.\frac{1}{2}|\overline{\mathrm{a}} \times \overline{\mathrm{b}}|\right]$
(36) Find the volume of a prism having a vertex at origin and having edges $\overrightarrow{O A}=2 \bar{i}+\bar{j}+\overline{\mathbf{k}}, \quad \overrightarrow{O B}=3 \bar{i}-\bar{j}+\overline{\mathbf{k}}$ and $\overrightarrow{O C}=-\bar{i}+\bar{j}-\overline{\mathbf{k}}$.
[Ans: 4 cubic units]
(37) Show that $(4,5,1),(0,-1,-1),(3,9,4)$ and $(-4,4,4)$ cannot be the vertices of any tetrahedron.
(38) Find the volume of the tetrahedron with vertices (4, 5, 1), (0,-1,-1), (3, 9, 4) and (1, 2, 3).
[Ans: $\frac{28}{3}$ cubic units]

www.schootnotes4w.com

(39) A mechanical boat is rowing towards the north with speed of $8 \mathrm{~km} / \mathrm{hr}$. If wind blows from the east with the speed of $10 \mathrm{~km} / \mathrm{hr}$, find the resulting speed of the boat and also the direction of resulting motion of the boat.
[Ans: $2 \sqrt{41} \mathrm{~km} / \mathrm{hr}$ at an angle of $\pi=\cos ^{-1}\left(\frac{5}{\sqrt{41}}\right)$ with east towards north]
(40) A river flows with a speed of 5 units. A person desires to cross the river in a direction perpendicular to its flow. Find in which direction should he swim if his speed is 8 units.
[Ans: At an angle of $\pi-\cos ^{-1}\left(\frac{5}{8}\right)$ with the direction of flow of the river]
(41) If speed of a particle is 5 units towards the east and $\sqrt{8}$ units towards the southwest, then find the resultant speed of the particle and its direction.
$\left[\right.$ Ans : $\sqrt{13}$ units at an angle of $\cos ^{-1} \frac{3}{\sqrt{13}}$ with east towards south $]$
(42) A boat speeds towards the north at $6 \sqrt{2}$ units. A man on the boat feels that the wind is blowing from the south-east at 5 units. Find the true velocity of the wind.
[Ans: $\sqrt{157}$ units at an angle of $\pi-\cos ^{-1}\left(\frac{5}{\sqrt{314}}\right)$ with east towards north]
(43) A steamer moves to the north-east with a speed of 40 units. A passenger on the steamer feels the wind to be blowing from the north with $25 \sqrt{2}$ units. Find the true velocity of the wind.
[Ans : $5 \sqrt{34}$ units at an angle of $\cos ^{-1} \frac{4}{\sqrt{17}}$ with east towards south]
(44) A particle is displaced from $A(2,1)$ to $B(4,2)$ when forces of magnitudes $4 \sqrt{5}$ in the direction $2 \bar{i}+\bar{j}$ and $6 \sqrt{5}$ in the direction $\bar{i}-2 \bar{j}$ are applied. Find the work done.
[Ans: 20 units]

