Class XII

Chemistry

Ch. 4: Chemical Kinetics

Important Formulae \& Concepts

1. Instantaneous rate $=\frac{d x}{d t}$, where $d x$ is small change in conc. and $d t$ is the smallest interval of time.
2. Average rate $=\frac{\Delta x}{\Delta t}$, where Δx is change in concentration and $\Delta \mathrm{t}$ is large interval of time.
3. $A+B \rightarrow C+D$

Rate of disappearance of $A=\frac{-d[A]}{d t}$, where $d[A]$ is small change in conc. of ' A ' and $d t$ is small interval of time
Rate of disappearance of $B=\frac{-d[B]}{d t}$,
Rate of appearance of $C=\frac{+d[C]}{d t}$
Rate of appearance of $D=\frac{+d[D]}{d t}$
Rate $=\frac{-\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}=\frac{-\mathrm{d}[\mathrm{B}]}{\mathrm{dt}}=\frac{\mathrm{d}[\mathrm{C}]}{\mathrm{dt}}=\frac{\mathrm{d}[\mathrm{D}]}{\mathrm{dt}}$
Unit of rate of reaction $=\mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}$
4. Order of reaction:

If rate law expression for a reaction is
Rate $=k[A]^{x}[B]^{y}$
Order of reaction $=x+y$
Remember: Order cannot be determined with a given balanced chemical equation. It can be experimentally determined.
5. Integrated rate law for zero order reaction:
$R \rightarrow P$
$\frac{d x}{d t}=k[R]^{0}$
Unit of ' k^{\prime} is $\mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}$
$k=\frac{\left[R_{0}\right]-[R]}{t}$
If we plot a graph between concentration of R vs time, the graph is a straight line with slope equal to $-k$ and intercept is equal to $\left[R_{0}\right]$
6. Half- life reaction for a for zero order reaction:

$$
t_{1 / 2}=\frac{\left[R_{0}\right]}{2 k}
$$

7. Rate law for $1^{\text {st }}$ order reaction:

$$
R \rightarrow P
$$

$$
\mathrm{k}=\frac{2.303}{\mathrm{t}} \log \frac{\left[\mathrm{R}_{0}\right]}{[\mathrm{R}]}
$$

where ' k ' is rate constant, $\left[R_{0}\right]$ is initial molar conc., $[R]$ is final molar conc. after time ' t '
8. Half- Life for a first order reaction is:
$\mathrm{t}_{1 / 2}=\frac{0.693}{\mathrm{k}}$
9. Formula to calculate rate constant for first order gas phase reaction of the type
$\mathrm{A}(\mathrm{g}) \rightarrow \mathrm{B}(\mathrm{g})+\mathrm{C}(\mathrm{g})$
$k=\frac{2.303}{t} \log \frac{p_{i}}{\left(2 p_{i}-p_{t}\right)}$
Where:
p_{i} is initial pressure of A
p_{t} is total pressure of gaseous mixture containing A, B, C
Remember:
$p_{t}=p_{A}+p_{B}+p_{c}$
10. Arrhenius equation:
$\mathrm{k}=\mathrm{A} \mathrm{e}^{-\mathrm{E}_{\mathrm{a}} / R T}$
11. $\log \frac{k_{2}}{k_{1}}=\frac{E_{a}}{2.303 R}\left(\frac{T_{2}-T_{1}}{T_{1} T_{2}}\right)$
12. Rate $=P Z_{A B} \cdot e^{\frac{-E_{a}}{R T}}$

Where:
$Z_{A B}$ represents the collision frequency of reactants, A and B P is called the probability or steric factor.

