SECTION A

1. Write the number of all one-one functions from the set $\mathrm{A}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ to itself.
2. Find x if $\tan ^{-1} 4+\cot ^{-1} \mathrm{x}=\frac{\pi}{2}$
3. What is the value of $\left|3 I_{3}\right|$, where I_{3} is the identity matrix of order 3?
4. For what value of k, the matrix $\left[\begin{array}{cc}2-\mathrm{k} & 3 \\ -5 & 1\end{array}\right]$ is not invertible?
5. If A is a matrix of order $2 x 3$ and B is a matrix of order 3×5, what is the order of matrix $(A B)^{\prime}$ or T ?
6. Write a value of $\int \frac{\mathrm{dx}}{\sqrt{4-\mathrm{x}^{2}}}$.
7. Find $\mathrm{f}(\mathrm{x})$ satisfying the following :

$$
\int e^{x}\left(\sec ^{2} x+\tan x\right) d x=e^{x} f(x)+c
$$

8. In a triangle $A B C$, the sides $A B$ and $B C$ are represented by vectors $2 \hat{i} \hat{-}+2 \hat{k}, \hat{i}+3 \hat{j}+5 \hat{k}$ respectively. Find the vector representing CA.
9. Find the value of λ for which the vector $\vec{a}=3 \hat{i}+\hat{j}-2 \hat{k}$ and $\vec{b}=\hat{i}+\lambda \hat{j}-3 \hat{k}$ are perpendicular to each other.
10. Find the value of λ such that the line $\frac{x-2}{9}=\frac{y-1}{\lambda}=\frac{z+3}{-6}$ is perpendicular to the plane $3 x-y-2 z=7$

SECTION B

11. Show that the function $f: R \rightarrow R$ defined by $f(x)=2 x^{3}-7$, for $x \in R$ is bijective.

OR

Let $f, g: R \rightarrow R$ be defined as $f(x)=|x|$ and $g(x)=[x]$ where $[x]$ denotes the greatest integer less than or equal to x. Find fog $\left(\frac{5}{2}\right)$ and gof $(-\sqrt{2})$.
12. Prove that $\tan ^{-1} 1+\tan ^{-1} 2+\tan ^{-1} 3=\pi$
13. If $A=\left[\begin{array}{rr}3 & -5 \\ -4 & 2\end{array}\right]$. show that $A^{2}-5 A-14 I=0$. Hence find A^{-1}.
14. Show that $f(x)=|x-3|, \forall x \in R$, is continuous but not differentiable at $x=3$.

OR

If $\tan \left(\frac{x^{2}-y^{2}}{x^{2}+y^{2}}\right)=a$, then prove that $\frac{d y}{d x}=\frac{y}{x}$
15. Verify Rolle's Theorem for the function f, given by $f(x)=e^{x}(\sin x-\cos x)$ on $\left[\frac{\pi}{4}, \frac{5 \pi}{4}\right]$
16. Using differentials, find the approximate value of $\sqrt{25 \cdot 2}$

OR
Two equal sides of an isoceles triangle with fixed base ' a ' are decreasing at the rate of $9 \mathrm{~cm} / \mathrm{second}$. How fast is the area of the triangle decreasing when the two sides are equal to ' a '.
17. Evaluate $\int_{-1}^{\frac{1}{2}}|x \cos (\pi x)| d x$.
18. Solve the following differential equation :
$\mathrm{ye}^{x / y} \mathrm{dx}=\left(\mathrm{xe}^{x / y}+\mathrm{y}\right) \mathrm{dy}$
19. Solve the following differential equation :
$\left(1+y+x^{2} y\right) d x+\left(x+x^{3}\right) d y=0$, where $y=0$ when $x=1$
If $\vec{a} \vec{h}$ and \vec{c} are three unit vectors such that $\vec{a} \cdot \vec{b}=\vec{a} \cdot \vec{c}=0$ and angle between \vec{b} and \vec{c} is $\frac{\pi}{6}$, prove that $\overrightarrow{\mathrm{a}}= \pm 2(\overrightarrow{\mathrm{~b}} x \overline{\mathrm{c}})$.
21. Show that the four points $(0,-1,-1),(4,5,1),(3,9,4)$ and $(-4,4,4)$ are coplanar. Also, find the equation of the plane containing them.
22. A coin is biased so that the head is 3 times as likely to occur as tail. If the coin is tossed three times, find the probability distribution of number of tails.

OR

How many times must a man toss a fair coin, so that the probability of having at least one head is more than 80% ?

SECTION C

23. Using properties of determinants, show that

$$
\Delta=\left|\begin{array}{ccc}
(\mathrm{b}+\mathrm{c})^{2} & \mathrm{ab} & \mathrm{ca} \\
\mathrm{ab} & (\mathrm{a}+\mathrm{b})^{2} & \mathrm{bc} \\
\mathrm{ac} & \mathrm{bc} & (\mathrm{a}+\mathrm{b})^{2}
\end{array}\right|=2 \mathrm{abc}(\mathrm{a}+\mathrm{b}+\mathrm{c})^{3}
$$

24. The sum of the perimeter of a circle and a square is k , where k is some constant. Prove that the sum of their areas is least when the side of square is double the radius of the circle.

OR

A helicopter is flying along the curve $y=x^{2}+2$. A soldier is placed at the point (3,2). Find the nearest distance between the soldier and the helicopter.
25. Evaluate : $\int \frac{1}{\sin x(5-4 \cos x)} d x$

OR
Evaluate : $\int \sqrt{\frac{1-\sqrt{\mathrm{x}}}{1+\sqrt{\mathrm{x}}}} \mathrm{dx}$
26. Using integration, find the area of the region

$$
\left\{(x, y):|x-1| \leq y \leq \sqrt{5-x^{2}}\right\}
$$

27. Show that the lines $\frac{x+3}{-3}=\frac{y-1}{1}=\frac{z-5}{5}$ and $\frac{x+1}{-1}=\frac{y-2}{2}=\frac{z-5}{5}$ are coplanar. Also find the equation of the plane.
28. From a pack of 52 cards, a card is lost. From the remaining 51 cards, two cards are drawn at random (without replacement) and are found to be both diamonds. What is the probability that the lost card was a card of heart?
29. A diet for a sick person must contain at least 4000 units of vitamins, 50 units of minerals and 1400 calories. Two foods X and Y are available at a cost of Rs 4 and Rs 3 per unit respectively. One unit of food X contains 200 units of vitamins, 1 unit of minerals and 40 calories, whereas 1 unit of food Y contains 100 units of vitamins, 2 units of minerals and 40 calories. Find what combination of foods X and Y should be used to have least cost, satisfying the requirements. Make it an LPP and solve it graphically.

MATHEMATICS CLASS - XII

SAMPLE PAPER II

SECTION A

1. 6
2. 4
3. 27
4. 17
5. 5×2
6. $\sin ^{-1}\left(\frac{x}{2}\right)$
7. $\tan x$
8. $-(3 \hat{\mathbf{i}}+2 \hat{j}+7 \hat{\mathrm{k}})$
9. $\lambda=-9$
10. $\lambda=-3$

SECTION B

11. Let $x . y$ be any two elements of R (domain)
then $\mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{y}) \Rightarrow 2 \mathrm{x}^{3}-7=2 \mathrm{y}^{3}-7$
$\Rightarrow x^{3}=y^{3} \Rightarrow x=y$ 1
so, f is an injective function
Let y be any element of R (co-domain)
$\therefore \mathrm{f}(\mathrm{x})=\mathrm{y} \Rightarrow 2 \mathrm{x}^{3}-7=\mathrm{y}$
$\Rightarrow x^{3}=\frac{y+7}{2} \Rightarrow x=\left(\frac{y+7}{2}\right)^{\frac{1}{3}}$
Now for all $y \in R$ (co-domain), there exists $x=\left(\frac{y+7}{2}\right)^{\frac{1}{3}} \in R$ (domain
such that $f(x)=f\left\{\left(\frac{y+7}{2}\right)^{\frac{1}{3}}\right\}=2\left\{\left(\frac{y+7}{2}\right)^{\frac{1}{3}}\right\}^{3}-7$

$$
\begin{equation*}
=2 \cdot \frac{y+7}{2}-7=y \tag{1}
\end{equation*}
$$

so, f is surjective
Hence, f is a bijective function
OR

$$
\begin{equation*}
\operatorname{fog}\left(\frac{5}{2}\right)=f\left[g\left(\frac{5}{2}\right)\right]=f(2)=|2|=2 \tag{2}
\end{equation*}
$$

$\operatorname{gof}(-\sqrt{2})=\mathrm{g}[\mathrm{f}(-\sqrt{2})]=\mathrm{g}[|-\sqrt{2}|]=\mathrm{g}[\sqrt{2}]=1$
12. L.H.S. $=\tan ^{-1} 1+\tan ^{-2} 2+\tan ^{-1} 3$

$$
\begin{aligned}
& =\frac{\pi}{4}+\frac{\pi}{2}-\cot ^{-1} 2+\frac{\pi}{2}-\cot ^{-1} 3 \\
& =\frac{5 \pi}{4}-\tan ^{-1}\left(\frac{1}{2}\right)-\tan ^{-1}\left(\frac{1}{3}\right) 1 / 2 \\
& =\frac{5 \pi}{4}-\left(\tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{1}{3}\right)
\end{aligned}
$$

$$
=\frac{5 \pi}{4}-\tan ^{-1}\left(\frac{\frac{1}{2}+\frac{1}{3}}{1-\frac{1}{2} \cdot \frac{1}{3}}\right)
$$

$$
=\frac{5 \pi}{4}-\tan ^{-1}(1)
$$

$$
=\frac{5 \pi}{4}-\frac{\pi}{4}
$$

$$
=\pi=\mathrm{RHS}
$$

13. $\mathrm{A}=\left[\begin{array}{cc}3 & -5 \\ -4 & 2\end{array}\right] \Rightarrow \mathrm{A}^{2}=\left[\begin{array}{cc}3 & -5 \\ -4 & 2\end{array}\right]\left[\begin{array}{cc}3 & -5 \\ -4 & 2\end{array}\right]=\left[\begin{array}{cc}29 & -25 \\ -20 & 24\end{array}\right]$

$$
\begin{aligned}
& A^{2}-5 A-14 I=\left[\begin{array}{cc}
29 & -25 \\
-20 & 24
\end{array}\right]-5\left[\begin{array}{cc}
3 & -5 \\
-4 & 2
\end{array}\right]-14\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{cc}
29 & -25 \\
-20 & 24
\end{array}\right]+\left[\begin{array}{rr}
-15 & 25 \\
20 & -10
\end{array}\right]+\left[\begin{array}{rr}
-14 & 0 \\
0 & -14
\end{array}\right]
\end{aligned}
$$

$\left[\begin{array}{cc}29-15-14 & -25+25-0 \\ -20+20+0 & 24-10-14\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]=0$
Premultiplying $\mathrm{A}^{2}-5 \mathrm{~A}-14 \mathrm{I}=0$ by A^{-1}, we get
$A^{-1} \cdot A^{2}-5 A^{-1} A-14 A^{-1} I=0$
or, $\mathrm{A}-5 \mathrm{I}-14 \mathrm{~A}^{-1}=0$
or $\mathrm{A}^{-1}=\frac{1}{14}(\mathrm{~A}-5 \mathrm{I})=\frac{1}{14}\left\{\left[\begin{array}{cc}3 & -5 \\ -4 & 2\end{array}\right]+\left[\begin{array}{rr}-5 & 0 \\ 0 & -5\end{array}\right]\right\}$
$=\frac{1}{14}\left[\begin{array}{ll}-2 & -5 \\ -4 & -3\end{array}\right]$
14. $f(x)=|(x-3)| \Rightarrow f(x)= \begin{cases}x-3 & \text { if } x \geq 3 \\ -(x-3) & \text { if } x<3\end{cases}$
$\lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{-}}-(x-3)=0$
$\lim _{x \rightarrow 3^{+}} f(x)=\lim _{x \rightarrow 3^{+}}(x-3)=0$
and $f(3)=3-3=0$
$\lim f(x)=\lim f(x)=f(3)$
$\therefore \mathrm{x} \rightarrow 3^{-} \quad \mathrm{x} \rightarrow 3^{+}$
$\therefore \mathrm{f}(\mathrm{x})$ is continuous at $\mathrm{x}=3$
For differentiability
$L f^{\prime}(3)=\lim _{x \rightarrow 3^{-}} \frac{f(x)-f(3)}{x-3}=\lim _{x \rightarrow 3^{-}} \frac{-(x-3)-0}{x-3}=-1$
$R f^{\prime}(3)=\lim _{x \rightarrow 3^{+}} \frac{f(x)-f(3)}{x-3}=\lim _{x \rightarrow 3^{+}} \frac{(x-3)-0}{x-3}=1$
$\therefore \mathrm{Lf}^{\prime}(3) \neq \mathrm{Rf}^{\prime}(3)$
so, $f(x)$ is not differentiable at $x=3$
OR
$\tan \left(\frac{x^{2}-y^{2}}{x^{2}+y^{2}}\right)=a$
$\Rightarrow \frac{x^{2}-y^{2}}{x^{2}+y^{2}}=\tan ^{-1} a$
Differentiating (1) w.r.t. x , we get

$$
\begin{align*}
& \frac{\left(x^{2}+y^{2}\right)\left(2 x-2 y \frac{d y}{d x}\right)-\left(x^{2}-y^{2}\right)\left(2 x+2 y \frac{d y}{d x}\right)}{\left(x^{2}+y^{2}\right)^{2}}=0 \\
& \text { or, } 2 x\left(x^{2}+y^{2}\right)-2 y\left(x^{2}+y^{2}\right) \frac{d y}{d x}-2 x\left(x^{2}-y^{2}\right)-2 y\left(x^{2}-y^{2}\right) \frac{d y}{d x}=0 \tag{2}\\
& \text { or, } \frac{d y}{d x}\left[-2 x^{2} y-3 x^{6}-2 x^{2} y+2 y^{6}\right]=-2 x^{5}-2 x y^{2}+2 x^{5}-2 x y^{2} \\
& \Rightarrow \frac{d y}{d x}\left[-4 x^{2} y\right]=-4 x y^{2} \\
& \Rightarrow \frac{d y}{d x}=\frac{-4 x y^{2}}{-4 x^{2} y}=\frac{y}{x}
\end{align*}
$$

15. We know that $\mathrm{e}^{\mathrm{x}}, \sin \mathrm{x}$ and $\cos \mathrm{x}$ functions are continuous and differentiable everywhere.

Product, sum and difference of two continuous functions is again a continuous function, so
f is also continuous in $\left[\frac{\pi}{4}, \frac{5 \pi}{4}\right]$
Now, $\mathrm{f}\left(\frac{\pi}{4}\right)=\mathrm{e}^{\frac{\pi}{4}}\left(\sin \frac{\pi}{4}-\cos \frac{\pi}{4}\right)=0$
$f\left(\frac{5 \pi}{4}\right)=e^{\frac{5 \pi}{4}}\left(\sin \frac{5 \pi}{4}-\cos \frac{5 \pi}{4}\right)=0$
$\Rightarrow \mathrm{f}\left(\frac{\pi}{4}\right)=\mathrm{f}\left(\frac{5 \pi}{4}\right)$
\therefore Rolle's theorem is applicable
$\mathrm{f}^{\prime}(\mathrm{x})=\mathrm{e}^{\mathrm{x}}(\sin \mathrm{x}-\cos \mathrm{x})+\mathrm{e}^{\mathrm{x}}(\cos \mathrm{x}+\sin \mathrm{x})=2 \mathrm{e}^{\mathrm{x}} \sin \mathrm{x}$
$\therefore \mathrm{f}^{\prime}(\mathrm{x})=0$ gives $2 \mathrm{e}^{\mathrm{x}} \sin \mathrm{x}=0$
or $\sin x=0 \Rightarrow x=0, \pi$
Now $\pi \in\left(\frac{\pi}{4}, \frac{5 \pi}{4}\right)$
\therefore The theorem is verified with $\mathrm{x}=\pi$
16. Let $\mathrm{x}=25, \mathrm{x}+\Delta \mathrm{x}=25.2$ so $\Delta \mathrm{x}=0.2$

Let $\mathrm{y}=\sqrt{\mathrm{x}} \Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{2 \sqrt{\mathrm{x}}}=\frac{1}{2 \sqrt{25}}=\frac{1}{10}$ at $\mathrm{x}=25$
$d y=\frac{d y}{d x} \cdot \Delta x$
or $\Delta y=\frac{d y}{d x} \cdot \Delta x=\frac{1}{10} x 0.2=0.02$
$\therefore \sqrt{25.2}=y+\Delta y=5+0.02=5.02$

OR

Let A be the area of $\triangle \mathrm{ABC}$ in which $\mathrm{AB}=\mathrm{AC}=\mathrm{x}$ and $\mathrm{BC}=\mathrm{a}$

$$
\begin{aligned}
\therefore A & =\frac{1}{2} B C \times A D \\
& =\frac{1}{2} a \sqrt{x^{2}-\frac{a^{2}}{4}}=\frac{a}{4} \sqrt{4 x^{2}-a^{2}}
\end{aligned}
$$

$$
\begin{equation*}
\frac{\mathrm{dA}}{\mathrm{dt}}=\frac{\mathrm{a}}{4} \cdot \frac{1}{2 \sqrt{4 \mathrm{x}^{2}-\mathrm{a}^{2}}} \cdot 8 \mathrm{x} \cdot \frac{\mathrm{dx}}{\mathrm{dt}} \tag{1}
\end{equation*}
$$

$$
=\frac{a x \times 9}{\sqrt{4 x^{2}-a^{2}}}
$$

$$
\therefore\left(\frac{\mathrm{dA}}{\mathrm{dt}}\right)_{\mathrm{at} \mathrm{x}=\mathrm{a}}=\frac{9 \mathrm{a} \cdot \mathrm{a}}{\sqrt{3 \mathrm{a}^{2}}}=3 \sqrt{3} \mathrm{~cm}^{2} / \mathrm{second}
$$

17. $I=\int_{-1}^{1 / 2}|x \cos (\pi x)| d x$

Three cases arise :
Case I : $-1<\mathrm{x}<\frac{-1}{2}$

$$
\begin{aligned}
& \Rightarrow-\pi<\pi x<-\frac{\pi}{2} \\
& \Rightarrow \cos \pi x<0 \Rightarrow x \cos \pi x>0
\end{aligned}
$$

Case II: $\quad-\frac{1}{2}<x<0$

$$
\begin{aligned}
& -\frac{\pi}{2}<\pi x<0 \\
& \Rightarrow \cos (\pi x)>0 \\
& \Rightarrow x \cos (\pi x)<0
\end{aligned}
$$

case III : $\quad 0<x<\frac{1}{2}$

$$
\begin{aligned}
& \Rightarrow 0<\pi x<\frac{\pi}{2} \\
& \Rightarrow \cos \pi x>0 \\
& \Rightarrow x \cos \pi x>0
\end{aligned}
$$

$\therefore \mathrm{I}=\int_{-1}^{-1 / 2} \mathrm{x} \cos \pi \mathrm{xdx}+\int_{-1 / 2}^{0}-\mathrm{x} \cos \pi \mathrm{xdx}+\int_{0}^{1 / 2} \mathrm{x} \cos \pi \mathrm{xdx}$
$=\left[\frac{\mathrm{x} \sin \pi \mathrm{x}}{\pi}+\frac{\cos \pi \mathrm{x}}{\pi^{2}}\right]_{-1}^{-\frac{1}{2}}-\left[\frac{\mathrm{x} \sin \pi \mathrm{x}}{\pi}+\frac{\cos \pi \mathrm{x}}{\pi^{2}}\right]_{-\frac{1}{2}}^{0}+\left[\frac{\mathrm{x} \sin \pi \mathrm{x}}{\pi}+\frac{\cos \pi \mathrm{x}}{\pi^{2}}\right]_{0}^{-\frac{1}{2}}$
$=\left[\left(\frac{1}{2 \pi}+0\right)-\left(0-\frac{1}{\pi^{2}}\right)\right]-\left[-\left(\frac{1}{2 \pi}+0\right)+\left(0+\frac{1}{\pi^{2}}\right)\right]+\left[-\left(0+\frac{1}{\pi^{2}}\right)+\left(\frac{1}{2 \pi}+0\right)\right]$
$\frac{1}{2 \pi}+\frac{1 /}{-\pi^{2}}+\frac{1}{2 \pi}-\frac{1}{-\pi^{2}}+\frac{1}{2 \pi}-\frac{1}{\pi^{2}}$
$=\frac{3}{2 \pi}-\frac{1}{\pi^{2}}$
18. $y e^{\frac{x}{y}} d x=\left(x e^{\frac{x}{y}}+y\right) d y$
$\Rightarrow \frac{d x}{d y}=\frac{x e^{\frac{x}{y}}+y}{y \cdot e^{\frac{x}{y}}}$
Let $x=v y \Rightarrow \frac{d x}{d y}=v+y \cdot \frac{d v}{d y}$
$\therefore v+y \frac{d v}{d y}=\frac{v y \cdot e^{\prime}+y}{y \cdot e^{\prime}}$

$$
\begin{align*}
& \Rightarrow y \frac{d v}{d y}=\frac{v y e^{v}+y}{y \cdot e^{v}}-v=\frac{\text { vye }^{v}+y-\text { vye }^{r}}{y \cdot e^{v}}=\frac{1}{e^{v}} \\
& \Rightarrow e^{v} d v=\frac{d y}{y}
\end{align*}
$$

Integrating we get $e^{v}=\log y+\log c=\log c y$
Substituting $v=\frac{x}{y}$, we get

$$
e^{\frac{x}{y}}=\log c y
$$

19. $\left(1+y+x^{2} y\right) d x+\left(x+x^{3}\right) d y=0$

$$
\Rightarrow x\left(1+x^{2}\right) d y=-\left[1+y\left(1+x^{2}\right)\right] d x
$$

$$
\Rightarrow \frac{d y}{d x}=\frac{-1-y\left(1+x^{2}\right)}{x\left(1+x^{2}\right)}=\frac{-1}{x} \cdot y-\frac{1}{x\left(1+x^{2}\right)}
$$

or $\frac{d y}{d x}+\frac{1}{x} \cdot y=-\frac{1}{x\left(1+x^{2}\right)}$
\therefore I.F. $=\int \mathrm{e}^{\frac{1}{\mathrm{x}} \mathrm{dx}}=\mathrm{e}^{\log x}=\mathrm{x}$
\therefore The solution is

$$
\begin{aligned}
& y \cdot x=-\int \frac{1}{x\left(1+x^{2}\right)} \cdot x d x=-\int \frac{d x}{1+x^{2}} \\
& =\tan ^{-1} x+c
\end{aligned}
$$1

when $\mathrm{x}=1, \mathrm{y}=0$

$$
\begin{aligned}
& \therefore 0=-\tan ^{-1}(1)+c \quad \Rightarrow \mathrm{c}=\pi / 4 \\
& \therefore \mathrm{xy}=-\tan ^{-1} \mathrm{x}+\frac{\pi}{4}
\end{aligned}
$$

[^0]$\therefore \overrightarrow{\mathrm{a}}$ is \perp to the plane of $\overrightarrow{\mathrm{b}}$ and $\overrightarrow{\mathrm{c}}$
$\Rightarrow \overrightarrow{\mathrm{a}}$ is parallel to $\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}}$
Let $\vec{a}=k(\vec{b} \times \vec{c})$, where k is a scalar
$\therefore|\overrightarrow{\mathrm{a}}|=|\mathrm{k}||\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}}|$
$=|\mathrm{k}||\overrightarrow{\mathrm{b}}||\overrightarrow{\mathrm{c}}| \sin \frac{\pi}{6}$
$\therefore \mathrm{k}= \pm 2$
$\therefore \overrightarrow{\mathrm{a}}= \pm 2(\overrightarrow{\mathrm{~b}} \times \overrightarrow{\mathrm{c}})$
21. Equation of plane passing through $(0,-1,-1)$ is
$$
a(x-0)+b(y+1)+c(z+1)=0 \quad--(i)
$$
(i) passes through $(4,5,1)$ and $(3,9,4)$
\[

$$
\begin{equation*}
\Rightarrow 4 \mathrm{a}+6 \mathrm{~b}+2 \mathrm{c}=0 \text { or } 2 \mathrm{a}+3 \mathrm{~b}+\mathrm{c}=0 \tag{ii}
\end{equation*}
$$

\]

and $3 a+10 b+5 c=0$
from (ii) and (iii), we get

$$
\begin{align*}
& \frac{a}{15-10}=\frac{-b}{10-3}=\frac{c}{20-9} \Rightarrow \frac{a}{5}=\frac{-b}{7}=\frac{c}{11}=k \text { (say) } \\
& \therefore a=5 k, b=-7 k, c=11 k \quad-- \text {-(iv) } \tag{iv}
\end{align*}
$$

Putting these values of a, b, c in (i), we get
$5 \mathrm{kx}-7 \mathrm{k}(\mathrm{y}+1)+11 \mathrm{k}(\mathrm{z}+1)=0$
or $5 \mathrm{x}-7 \mathrm{y}+11 \mathrm{z}+4=0 \quad$---(v) $1 / 2$

Putting the point $(-4,4,4)$ in (v), we get
$-20-28+44+4=0$ which is satisfied $\quad 1 / 2$
\therefore The given points are co-planar and equation
of plane is $5 x-7 y+11 z+4=0$
22. According to the given question
$\mathrm{P}(\mathrm{H})=\frac{3}{4}, \mathrm{P}(\mathrm{T})=\frac{1}{4}$
Let X be the random variate, which can take values $0,1,2,3$

$$
\mathrm{P}(\mathrm{X}=0)=\mathrm{P}(\text { No Tails })=\mathrm{P}(\mathrm{HHH})=\frac{3}{4} \times \frac{3}{4} \times \frac{3}{4}=\frac{27}{64}
$$

$$
\mathrm{P}(\mathrm{X}=1)=\mathrm{P}(1 \text { Tail })=\mathrm{P}(\mathrm{HHT})+\mathrm{P}(\mathrm{HTH})+\mathrm{P}(\mathrm{THH})
$$

$$
\begin{equation*}
=\frac{3}{4} \times \frac{3}{4} \times \frac{1}{4}+\frac{3}{4} \times \frac{1}{4} \times \frac{3}{4}+\frac{1}{4} \times \frac{3}{4} \times \frac{3}{4}=\frac{27}{64} \tag{1}
\end{equation*}
$$

$\mathrm{P}(\mathrm{X}=2)=\mathrm{P}(2$ tails $)=\mathrm{P}($ HTT $)+\mathrm{P}(\mathrm{THT})+\mathrm{P}(\mathrm{TTH})$

$$
\begin{equation*}
\frac{3}{4} \times \frac{1}{4} \times \frac{1}{4}+\frac{1}{4} \times \frac{3}{4} \times \frac{1}{4}+\frac{1}{4} \times \frac{1}{4} \times \frac{3}{4}=\frac{9}{64} \tag{1}
\end{equation*}
$$

$\mathrm{P}(\mathrm{X}=3)=\mathrm{P}(3$ tails $)=\mathrm{P}(\mathrm{TTT})$

$$
\frac{1}{4} \times \frac{1}{4} \times \frac{1}{4}=\frac{1}{64}
$$

Reqd. Probability Distribution is

X	0	1	2	3
$\mathrm{P}(\mathrm{X})$	$27 / 64$	$27 / 64$	$9 / 64$	$1 / 64$

OR
For a fair coin, $p(H)=\frac{1}{2}$ and $p(T)=\frac{1}{2}$ where H and T denote Head and
Tail respectively.
Let the coin be tossed n times
\therefore Required probability $\quad=1-\mathrm{p}$ (all Tails)

$$
=1-\frac{1}{2^{n}} \quad--(i)
$$

It has to be $>80 \%$
Total probability $=1$
\therefore (i) has to be $>\frac{4}{5}$
$\therefore 1-\frac{1}{2^{n}}>\frac{4}{5} \Rightarrow n=3$
\therefore The fair coin has to be tossed 3 times for the desired situation.

SECTION C

23.

$$
\Delta=\left|\begin{array}{ccc}
(\mathrm{b}+\mathrm{c})^{2} & \mathrm{ab} & \mathrm{ca} \\
\mathrm{ab} & (\mathrm{a}+\mathrm{c})^{2} & \mathrm{bc} \\
\mathrm{ac} & \mathrm{bc} & (\mathrm{a}+\mathrm{b})^{2}
\end{array}\right|
$$

Operating $R_{1} \rightarrow a R_{1}, R_{2} \rightarrow b R_{2}, R_{3} \rightarrow c R_{3}$, to get

$$
\Delta=\frac{1}{a b c}\left|\begin{array}{ccc}
a(b+c)^{2} & a^{2} b & a^{2} c \\
a b^{2} & b(a+c)^{2} & b^{2} c \\
a c^{2} & b^{2} c & c(a+b)^{2}
\end{array}\right|=\frac{a b c}{a b c}\left|\begin{array}{ccc}
(b+c)^{2} & a^{2} & a^{2} \\
b^{2} & (a+c)^{2} & b^{2} \\
c^{2} & c^{2} & (a+b)^{2}
\end{array}\right|
$$

Operating $\mathrm{c}_{2} \rightarrow \mathrm{c}_{2}-\mathrm{c}_{1}, \mathrm{c}_{3} \rightarrow \mathrm{c}_{3}-\mathrm{c}_{1}$, to get

$$
\Delta=\left|\begin{array}{ccc}
(b+c)^{2} & a^{2}-(b+c)^{2} & a^{2}-(b+c)^{2} \\
b^{2} & (a+c)^{2}-b^{2} & 0 \\
c^{2} & 0 & (a+b)^{2}-c^{2}
\end{array}\right|=(a+b+c)^{2}\left|\begin{array}{ccc}
(b+c)^{2} & a-b-c & a-b-c \\
b^{2} & a+b-c & 0 \\
c^{2} & 0 & a+b-c
\end{array}\right|
$$

$$
1+1 / 2
$$

Operating $R_{1} \rightarrow R_{1}-\left(R_{2}+R_{3}\right)$ to get

$$
\begin{aligned}
\Delta=(a+b+c)^{2} & \left|\begin{array}{ccc}
2 b c & -2 c & -2 b \\
b^{2} & a+c-b & 0 \\
c^{2} & 0 & a+b-c
\end{array}\right| c_{2} \rightarrow c_{2}+\frac{1}{b} c_{1}, c_{3} \rightarrow c_{3}+\frac{1}{c} c_{1} \\
& =(a+b+c)^{2}\left|\begin{array}{ccc}
2 b c & 0 & 0 \\
b^{2} & a+c & \frac{b^{2}}{c} \\
c^{2} & \frac{c^{2}}{b} & a+b
\end{array}\right|
\end{aligned}
$$

$$
\begin{align*}
& (a+b+c)^{2}\left[2 b c\left(a^{2}+a c+a b+b c-b c\right)\right]=(a+b+c)^{2}(2 b c) a(a+b+c) \\
& =(a+b+c)^{3} \cdot 2 a b c \tag{1}
\end{align*}
$$

24. Let the radius of circle be r and side of square be x

$$
\begin{equation*}
\therefore 2 \pi \mathrm{r}+4 \mathrm{x}=\mathrm{k} \tag{A}
\end{equation*}
$$

Let A be the sum of the areas of circle and square

$$
\therefore \mathrm{A}=\pi \mathrm{r}^{2}+\mathrm{x}^{2}
$$

$$
\begin{aligned}
& =\pi\left[\frac{k-4 x}{2 \pi}\right]^{2}+x^{2} \\
& =\pi\left[\frac{k^{2}+16 x^{2}-8 k x}{4 \pi^{2}}\right]+x^{2} \\
& =\frac{k^{2}+16 x^{2}-8 k x}{4 \pi}+x^{2} \\
& \therefore \frac{d A}{d x}=\frac{1}{4 \pi}[0+32 x-8 k]+2 x \\
& =\frac{1}{4 \pi}[32 x-8 k+8 \pi x]
\end{aligned}
$$

For optimisation $\frac{\mathrm{dA}}{\mathrm{dx}}=0 \Rightarrow(32+8 \pi \mathrm{x})=8 \mathrm{k}$

$$
\begin{equation*}
\Rightarrow x=\frac{k}{4+\pi} \tag{i}
\end{equation*}
$$

$\therefore \frac{\mathrm{d}^{2} \mathrm{~A}}{\mathrm{dx}^{2}}=\frac{1}{4 \pi}[32+8 \pi]>0 \Rightarrow$ Minima
Putting the value of x in (A) to get

$$
\begin{align*}
& 2 \pi \mathrm{r}+4 \cdot \frac{\mathrm{k}}{4+\pi}=\mathrm{k} \\
& \Rightarrow 2 \pi \mathrm{r}=\mathrm{k}-\frac{4 \mathrm{k}}{4+\pi}=\frac{\pi \mathrm{k}}{4+\pi} \\
& 2 \mathrm{r}=\frac{\mathrm{k}}{4+\pi} \tag{ii}
\end{align*}
$$

From (i) and (ii), $x=2 r$

OR

Let $\mathrm{P}(\mathrm{x}, \mathrm{y})$ be the position of the Helicopter and the position of soldier at $\mathrm{A}(3,2)$
$\therefore \mathrm{AP}=\sqrt{(\mathrm{x}-3)^{2}+(\mathrm{y}-2)^{2}}=\sqrt{(\mathrm{x}-3)^{2}+\left(\mathrm{x}^{2}\right)^{2}} \quad\left[\begin{array}{l}\therefore \mathrm{y}=\mathrm{x}^{2}+2 \text { is the } \\ =\mathrm{n} \text { of curve }\end{array}\right]$
Let $A P^{2}=z=(x-3)^{2}+x^{4}$
$\Rightarrow \frac{\mathrm{dz}}{\mathrm{dx}}=2(\mathrm{x}-3)+4 \mathrm{x}^{3}$
For optimisation $\frac{d z}{d x}=0 \Rightarrow 2 x^{3}+x-3=0$
or $(x-1)\left(2 x^{2}+2 x+3\right)=0 \Rightarrow x=1 \quad\left[\begin{array}{l}\text { other factor } \\ \text { gives no real values }\end{array}\right]$
$\frac{\mathrm{d}^{2} \mathrm{z}}{\mathrm{dx}^{2}}=6 \mathrm{x}^{2}+1>0 \Rightarrow$ Minima
when $\mathrm{x}=1, \mathrm{y}=\mathrm{x}^{2}+2=3$
\therefore The required point is $(1,3)$
And distance $\mathrm{AP}=\sqrt{(1-3)^{2}+(3-2)^{2}}=\sqrt{5}$
25. $\int \frac{1}{\sin x(5-4 \cos x)} d x=\int \frac{\sin x}{\sin ^{2} x(5-4 \cos x)} d x$
$=\int \frac{\sin x}{\left(1-\cos ^{2} x\right)(5-4 \cos x)} d x$
$=-\int \frac{d t}{\left(1-t^{2}\right)(5-4 t)}$, where $\cos x=t, d t=-\sin x d x$
$=-\int \frac{d t}{(1-t)(1+t)(5-4 t)}$
Let $\frac{1}{(1-t)(1+t)(5-4 t)}=\frac{A}{1-t}+\frac{B}{1+t}+\frac{C}{5-4 t}$
$\Rightarrow 1=\mathrm{A}(1+\mathrm{t})(5-4 \mathrm{t})+\mathrm{B}(1-\mathrm{t})(5-4 \mathrm{t})+\mathrm{c}\left(1-\mathrm{t}^{2}\right)$

Putting $\mathrm{t}=1$ in (i) to get $\mathrm{A}=\frac{1}{2}$
Putting $t=-1$ in (i) to get $B=\frac{1}{18}$
Putting $\mathrm{t}=\frac{5}{4}$ in (i) to get $\mathrm{C}=-\frac{16}{9}$
$\therefore I=-\left[\frac{1}{2} \int \frac{d t}{1-t}+\frac{1}{18} \int \frac{d t}{1+t}-\frac{16}{9} \int \frac{d t}{5-4 t}\right]$

$$
\begin{align*}
& -\left[-\frac{1}{2} \log |1-t|+\frac{1}{18} \log |1+t|-\frac{16}{9 x 4} \log |5-4 t|\right]+c \\
& =\frac{1}{2} \log |1-\cos x|-\frac{1}{18} \log |1+\cos x|-\frac{4}{9} \log |5-4 \cos x|+c \\
& I=\int \sqrt{\frac{1-\sqrt{x}}{1+\sqrt{x}}} d x=\int \frac{\sqrt{1-\sqrt{x}} \cdot \sqrt{1-\sqrt{x}}}{\sqrt{1+\sqrt{x}} \sqrt{1-\sqrt{x}}} d x=\int \frac{1-\sqrt{x}}{\sqrt{1-x}} d x \\
& =\int \frac{d x}{\sqrt{1-x}}-\int \frac{\sqrt{x}}{\sqrt{1-x}} d x=I_{1}-I_{2} \\
& I_{1}=\int(1-x)^{-\frac{1}{2}} d x=-2(1-x)^{\frac{1}{2}}+c_{1} \text { or }-2 \sqrt{1-x}+c_{1} \\
& I_{2}=\int \frac{\sqrt{x}}{\sqrt{1-x}} d x: L e t x=\sin ^{2} \theta, d x=2 \sin \theta \cos \theta d \theta \\
& =\int \frac{\sin \theta \cdot 2 \sin \theta \cos \theta d \theta}{\cos \theta}=2 \int \sin ^{2} \theta d \theta \\
& =\int(1-\cos 2 \theta) d \theta=\theta-\frac{\sin ^{2} 2 \theta}{2}=\theta-\sin \theta \cos \theta+c_{2} \tag{1}\\
& =\int=-2 \sqrt{(1-x)}-\sin { }^{-1} \sqrt{x}+\sqrt{x} \sqrt{1-x}+C \\
& =\sin -1 \sqrt{x}-\sqrt{x} \sqrt{1-x}+c_{2} \tag{1}\\
& =\sqrt{1-x}[\sqrt{x}-2]-\sin ^{-1} \sqrt{x}+C
\end{align*}
$$

26. Equations of curves are

$$
x^{2}+y^{2}=5 \text { and } y=\left\{\begin{array}{ll}
1-x, & x<1 \\
x-1, & x>1
\end{array}\right\}
$$

correct figure
Points of intersection are $c(2,1)$
$\mathrm{D}(-1,2)$
Required Area $=$ Area of $(\mathrm{EABCDE})-$ Area of $(\mathrm{ADEA})-$ Area of (ABCA)

$$
\begin{align*}
& =\int_{-1}^{2} \sqrt{5-x^{2}} d x-\int_{-1}^{1}(1-x) d x-\int_{-1}^{2}(x-1) d x 1 \\
& =\left[\frac{x}{2} \sqrt{5-x^{2}}+\frac{5}{2} \sin ^{-1} \frac{x}{\sqrt{5}}\right]_{-1}^{2}-\left[x-\frac{x^{2}}{2}\right]_{-1}^{1}-\left[\frac{x^{2}}{2}-x\right]_{1}^{2} \tag{1}\\
& =\left[\left\{1+\frac{5}{2} \sin ^{-1} \frac{2}{\sqrt{5}}\right\}-\left\{-\frac{1}{2} \times 2+\frac{5}{2} \sin ^{-1}\left(\frac{-1}{\sqrt{5}}\right)\right\}\right]-\left[\left(1-\frac{1}{2}\right)-\left(-1-\frac{1}{2}\right)\right] \\
& -\left[(2-2)-\left(\frac{1}{2}-1\right)\right] \\
& =1+\frac{5}{2} \sin ^{-1} \frac{2}{\sqrt{5}}+1-\frac{5}{2} \sin ^{-1}\left(\frac{-1}{\sqrt{5}}\right)-2-\frac{1}{2} \\
& =-\frac{1}{2}+\frac{5}{2}\left[\sin ^{-1} \frac{2}{\sqrt{5}}-\sin ^{-1}\left(\frac{-1}{\sqrt{5}}\right)\right]
\end{align*}
$$

27. Lines $\frac{x-x_{1}}{l_{1}}=\frac{y-y_{1}}{m_{1}}=\frac{z-z_{1}}{n_{1}}$ and $\frac{x-x_{2}}{l_{2}}=\frac{y-y_{2}}{m_{2}}=\frac{z-z_{2}}{n_{2}}$ are
coplanar if $\left|\begin{array}{ccc}x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\ l_{1} & m_{1} & n_{1} \\ l_{2} & m_{2} & n_{2}\end{array}\right|=0$

In this case $\left|\begin{array}{rrr}-2 & -1 & 0 \\ -3 & 1 & 5 \\ -1 & 2 & 5\end{array}\right|=-2(5-10)+1(-15+5)+0=10-10=0$
\therefore Lines are coplanar
Equation of plane containing this is

$$
\begin{aligned}
& \left|\begin{array}{ccc}
x+3 & y-1 & z-5 \\
-3 & 1 & 5 \\
-1 & 2 & 5
\end{array}\right|=0 \\
& \Rightarrow 5 x-10 y+5 z=0
\end{aligned}
$$

$$
\text { or } x-2 y+z=0
$$

28. Let events $E_{1}, E_{2}, E_{3}, E_{4}$ and A be defined as follows
E_{1} : Missing card is a diamond
E_{2} : Missing card is a spade
E_{3} : Missing card is a club
E_{4} : Missing card is a heart
A : Drawing two diamond cards

$$
\begin{align*}
& P\left(E_{1}\right)=P\left(E_{2}\right)=P\left(E_{3}\right)=P\left(E_{4}\right)=\frac{1}{4} \\
& P\left(A / E_{1}\right)=\frac{12}{51} \times \frac{11}{50} \\
& P\left(A / E_{2}\right)=P\left(A / E_{3}\right)=P\left(A / E_{4}\right)=\frac{13}{51} \times \frac{12}{50} \\
& P\left(E_{4} / \mathrm{A}\right)=\sum_{i=1}^{4} \frac{P\left(E_{4}\right) \cdot P\left(A / E_{4}\right)}{P\left(E_{i}\right) \cdot P\left(A / E_{i}\right)} \\
& \frac{1}{4}\left[\frac{12 \times 11+13 \times 12+13 \times 12+13 \times 12}{51 \cdot 50}\right] \\
& =\frac{13}{3 \times 13 \times 12} \times \frac{12}{50} \\
& \frac{13 \times 12}{3 \times 11}=\frac{13}{39+11}=\frac{13}{50}
\end{align*}
$$

29. Let x and y be the units taken of Food A and Food B respectively then LPP is,

Minimise $z=4 x+3 y$
Subject to constraints
$200 x+100 y \geq 4000$ or $2 x+y \geq 40$
$x+2 y \geq 50$
$40 \mathrm{x}+40 \mathrm{y} \geq 1400$ or $\mathrm{x}+\mathrm{y} \geq 35$
$x \geq 0, y \geq 0$ $11 / 2$

Correct Graph 2

The corness of feasible region are
$\mathrm{A}(50,0), \mathrm{B}(20,15), \mathrm{C}(5,30), \mathrm{D}(0,40)$
$\mathrm{Z}_{\mathrm{A}}=200, \mathrm{Z}_{\mathrm{B}}=125, \mathrm{Z}_{\mathrm{C}}=110, \mathrm{Z}_{\mathrm{D}}=120$
$\therefore Z$ is minimum at C
$\therefore 5$ units of Food A and 30 units of Food B
will give the minimum cost (which is Rs 110)

[^0]: $\overrightarrow{\mathrm{a}}, \overrightarrow{\mathrm{b}}=0$ and $\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{c}}=0$
 $\Rightarrow \vec{a} \perp \overrightarrow{\mathrm{~b}}$ and $\overrightarrow{\mathrm{a}} \perp \overrightarrow{\mathrm{c}}$

