
SUPPORT MATERIAL
COMPUTER SCIENCE

2011-12

CBSE Mark Distribution for different Topics (Important Lessons)

SlNo Unit Name Marks
1 UNIT 1 Programming in C++ 30
2 UNIT 2 Data structures 14
3 UNIT 3 Database and SQL 08
4 UNIT 4 Boolean Logic 08
5 UNIT 5 Communication and open source concept 10

Total Marks 70

Weightage to different topics/content units
Sr. No. Topic Marks

1 Review of C++ covered in Class XI 12
2 Object oriented programming in C+

+
12

3 Data Structure & Pointers 14
4 Data File Handling in C++ 06
5 Databases and SQL 08
6 Boolean Algebra 08
7 Communication and Open Source

Concepts
10

Total 70

Weightage to different forms of questions
S.

No.
Forms of Question Marks for each

question
No. of

Questions
Total

Marks
1 Very Short Answer Questions (VSA) 01 09 09
2 Short Answer Questions- Type 1 (SA1) 02 13 26
3 Short Answer Questions- Type II (SAII) 03 05 15
4 Long Answer Questions- (LA) 04 05 20

Total 32 70

Difficulty Level of Questions
S. N. Estimated Difficulty Level Percentage of questions

1 Easy 15%
2 Average 70%
3 Difficult 15%

1

INDEX

S.No. Topics PAGE
NO.

1 Overview of C++ 3

2 Basic Concepts of OOP & Classes and Objects 9

3 Data File Handling 23

4 Pointers 30

5

Data Structures
1. Arrays
2. Stacks
3. Queue

41

6 Database And SQL 68

7 Boolean Algebra 81

8 Communication And Open Source Concepts 92

9 Question Paper with Solution (March-2011) 109

UNIT 1 : PROGRAMMING IN C++

2

KEY POINTS:
Introduction to C++

• C++ is the successor of C language & developed by Bjarne Stroustrup at Bell Laboratories,
New Jersey in 1979.

Tokens- smallest individual unit. Following are the tokens
• Keyword-Reserve word that can’t be used as identifier
• Identifiers-Names given to any variable, function, class, union etc.
• Literals-Value of specific data type
• Variable- memory block of certain size where value can be stored and changed.
• Constant- memory block where value can be stored once but can’t changed later on
• Operator – performs some action on data

o Arithmetic(+,-,*,/,%)
o Relational/comparison (<,>,<=,>=,==,!=).
o Logical(AND(&&),OR(||),NOT(!).
o Conditional (? :)
o Increment/Decrement Operators(++/--)

• Precedence of operators:
++(post increment),--(post decrement) Highest

 Low

++(pre increment),--(pre decrement),sizeof !(not),-(unary),+unary plus)
*(multiply), / (divide), %(modulus)
+(add),-(subtract)
<(less than),<=(less than or equal),>(greater than), >=(greater than or equal to)
==(equal),!=(not equal)
&& (logical AND)
||(logical OR)
?:(conditional expression)
=(simple assignment) and other assignment operators(arithmetic assignment
operator)
, Comma operator

Data type- A specifier to create memory block of some specific size and type. For example –
int,float,double,char etc.
cout – It is an object of ostream_withassign class defined in iostream.h header file and used to
display value on monitor.
cin – It is an object of istream_withassign class defined in iostream.h header file and used to read
value from keyboard for specific variable.
comment- Used for better understanding of program statements and escaped by the compiler to
compile . e.g. – single line (//) and multi line(/*….*/)

Control structure :
Sequence
control
statement(if)

conditional
statement
(if else)

case control statement
(switch case)

loop control statement
(while ,do… while, for)

Syntax Syntax Syntax Syntax
if(expression)
{
statements;
}

If(expression)
{
 statements;
}
else
{
 statements;
}

switch(integral expression)
{case (int const expr1):
[statements
break;]
case (int const expr2):
[statements,
break;]
default:Statements;}

while(expression)
{statements;}
do ….while loop
do
{statement;} while(expression);
 for loop
for(expression1;expression2;expression3)
{statement;}

Note: any non-zero value of an expression is treated as true and exactly 0 (i.e. all bits contain
0) is treated as false.
Nested loop -loop within loop.
exit()- defined in process.h and used to leave from the program.
break- exit from the current loop.

3

continue- to skip the remaining statements of the current loop and passes control to the next loop
control statement.
goto- control is unconditionally transferred to the location of local label specified by <identifier>.
For example
A1:
cout<<”test”;
goto A1;
Some Standard C++ libraries

Header Nome Purpose
iostream.h Defines stream classes for input/output streams
stdio.h Standard input and output
ctype.h Character tests
string.h String operations
math.h Mathematical functions such as sin() and cos()
stdlib.h Utility functions such as malloc() and rand()

Some functions
• isalpha(c)-check whether the argument is alphabetic or not.
• islower(c)- check whether the argument is lowecase or not.
• isupper(c) - check whether the argument is upercase or not.
• isdigit(c)- check whether the argument is digit or not.
• isalnum(c)- check whether the argument is alphanumeric or not.
• tolower()-converts argument in lowercase if its argument is a letter.
• toupper(c)- converts argument in uppercase if its argument is a letter.
• strcat()- concatenates two string.
• strcmp-compare two string.
• pow(x,y)-return x raised to power y.
• sqrt(x)-return square root of x.
• random(num)-return a random number between 0 and (num-1)
• randomize- initializes the random number generator with a random value.

Array- Collection of element of same type that are referred by a common name.
One Dimension array

• An array is a continuous memory location holding similar type of data in single row or single
column

Two dimensional array
• A two diamensional array is a continuous memory location holding similar type of data in of

both row sand columns (like a matrix structure).
Function -Self-contained block of code that does some specific task and may return a value.
Function prototypes-Function declaration that specifies the function name, return type and
parameter list of the function.
syntax: return_type function_name(type var1,type var2,….,type varn);
Passing value to function-

• Passing by value
• Passing by address/reference

Function overloading
• Processing of two or more functions having same name but different list of parameters

Function recursion
• Function that call itself either directly or indirectly.

Local variables
• Declared inside the function.

Global variables
• Declared outside all braces { } in a program

Actual Parameters
Variables associated with function name during function call statement.
Formal Parameters
Variables which contains copy of actual parameters inside the function definition.

4

Structure-Collection of logically related different data types (Primitive and Derived) referenced under
one name.
Nested structure

• A Structure definition within another structure.
• A structure containing object of another structure.

typedef
• Used to define new data type name

#define Directives
• Use to define a constant number or macro or to replace an instruction.

Inline Function
• Inline functions are functions where the call is made to inline functions, the actual code then

gets placed in the calling program.
• What happens when an inline function is written?
• The inline function takes the format as a normal function but when it is compiled it is compiled

as inline code. The function is placed separately as inline function, thus adding readability to
the source program. When the program is compiled, the code present in function body is
replaced in the place of function call.
General Format of inline Function:
The general format of inline function is as follows:
inline datatype function_name(arguments)

inline int MyClass()
Example:
#include <iostream.h>
int MyClass(int);
void main()
{int x;
cout << “\n Enter the Input Value: ”;
cin>>x;
cout<<”\n The Output is: “ << MyClass(x);
}
inline int MyClass(int x1)
{return 5*x1;}
The output of the above program is:
Enter the Input Value: 10
The Output is: 50

The output would be the same even when the inline function is written solely as a function.
The concept, however, is different. When the program is compiled, the code present in the
inline function MyClass () is replaced in the place of function call in the calling program. The
concept of inline function is used in this example because the function is a small line of code.

The above example, when compiled, would have the structure as follows:
#include <iostream.h>
int MyClass(int);
void main()
{int x;
cout << “\n Enter the Input Value: ”; cin>>x;
//The MyClass(x) gets replaced with code return 5*x1;
cout<<”\n The Output is: “ << MyClass(x);
}
#include <iostream.h>
int MyClass(int);
void main()
{int x;
cout << “\n Enter the Input Value: ”;
cin>>x;
//Call is made to the function MyClass

5

cout<<”\n The Output is: “ << MyClass(x);
}
int MyClass(int x1)
{return 5*x1;}

1 Marks questions

1) Name the header files that shall be needed for the following code:
void main()
{ char word[]=”Board Exam”;

cout<<setw(20)<<word;
}

2) Name the Header file to which the following built in functions belongs to:
(i) gets() (ii) abs() (iii) sqrt() (iv) open()

2 Marks questions:
1) Rewrite the following program after removing the syntactical error(s) if any. Underline

each correction.
#include<iostream.h>
void main()
{ F = 10, S = 20;
 test(F;S);
 test(S);
}
 void test(int x, int y = 20)
{ x=x+y;
count<<x>>y;
}

2) Find the output of the following program:
#include<iostream.h>
void main()
{ int U=10,V=20;
for(int I=1;I<=2;I++)
{ cout<<”[1]”<<U++<<”&”<<V 5 <<endl;
 cout<<”[2]”<<++V<<”&”<<U + 2 <<endl; } }

3) Rewrite the following C++ program after removing the syntax error(s) if any. Underline
each correction. [CBSE 2010]
include<iostream.h>

class FLIGHT
{ Long FlightCode;

Char Description[25];
public

void addInfo()
{ cin>>FlightCode; gets(Description);}
void showInfo()
{ cout<<FlightCode<<”:”<<Description<<endl;}

};
void main()
{ FLIGHT F;

addInfo.F();
showInfo.F;

}
4) In the following program, find the correct possible output(s)from the options:

#include<stdlib.h>
#include<iostream.h>
void main()
{ randomize();

6

char City[][10]={“DEL”, “CHN”, “KOL”, “BOM”, “BNG”};
int Fly;
for(int I=0; I<3;I++)
{Fly=random(2) + 1;
cout<<City[Fly]<< “:”;
}}

Outputs:
(i) DEL : CHN : KOL: (ii) CHN: KOL : CHN:
(iii) KOL : BOM : BNG: (iv) KOL : CHN : KOL:

5) In the following C++ program what is the expected value of Myscore from options (i) to
(iv) given below. Justify your answer.

#include<stdlib.h>
#include<iostream.h>
void main()
{ randomize();
int Score[] = {25,20,34,56,72,63},Myscore;
cout<<Myscore<<endl;
}
Ii) 25 (ii) 34 (iii) 20 (iv) Garbage Value.

Answer to Questions
1 Marks Answer

1) Ans: iostream.h
iomanip.h

2) Ans: iostream.h (ii) math.h,stdlib.h (iii) math.h (iv)fstream.h
 2 marks Answers

1 Ans:
#include<iostream.h>
void test(int x,int y=20); //Prototype missing
void main()
{ int F = 10, S = 20; //Data type missing
Text(F,S); //Comma to come instead of ;
Text(S);}
void Text(int x, int y)
{ x=x+y;
cout<<x<<y; //Output operator << required }

2 Ans:Output:
 [1]10&15
 [2]21&13
 [1]11&16
 [2]22&14

3 Ans: #include<iostream.h>
class FLIGHT
{ long FlightCode;

char Description[25];
public:

void addInfo()
{ cin>>FlightCode; gets(Description);}
void showInfo()
{ cout<<FlightCode<<”:”<<Description<<endl;}

};
void main()
{ FLIGHT F;

F.addInfo();
F.showInfo;

}
4 Ans)

Since random(2) gives either 0 or 1, Fly value will be either 1 or 2.

7

(random(n) gives you any number between 0 to n-1) City[1] is .CHN.
City[2] is .KOL.
Since I value from 0 to 2 (ie<3), 3 iterations will takes place.
So the possible output consists 3 strings separated by :, each of
them may be either .CHN. or .KOL..
So the possible output will be
(ii) CHN : KOL : CHN:
(iv) KOL :CHN : KOL:

5 Ans: Expected Output:
(iv) Garbage value since Myscore is an uninitialized local variable.

8

BASIC CONCEPTS OF OOPS & CLASSES AND OBJECTS

Object-Oriented Programming groups related data and functions together in a class, generally making
data private and only some functions public. Restricting access decreases coupling and increases
cohesion. It has proven to be very effective in reducing the complexity increase with large programs.
For small programs may be difficult to see the advantage of OOP over, eg, structured programming
because there is little complexity regardless of how it's written.

It helps in programming approach in order to built robust user friendly and efficient software and
provides the efficient way to maintain real world software. OOP is an Object Oriented Programming
language which is the extension of Procedure Oriented Programming language. OOPs reduce the
code of the program because of the extensive feature of Polymorphism. OOPs have many properties
such as DataHiding, Inheritance Data Abstraction, Data Encapsulation and many more. The main aim
is to creating an Object to the Entire program and that to we can control entire program using the
Object. The main features of OOPS is Polymorphism, Multiple Inheritance, Abstraction and
Encapsulation.

Objects:
Object is the basic unit of object-oriented programming. Objects are identified by its unique name. An
object represents a particular instance of a class.

An Object is a collection of data members and associated member functions also known as methods.

Classes:
• Classes are data types based on which objects are created.
• Thus a Class represents a set of individual objects. Characteristics of an object are

represented in a class as Properties. The actions that can be performed by objects become
functions of the class and are referred to as Methods.

• Classes are the blueprints upon which objects are created. E.g when we design a map of the
house, the architect first designs it. Once it is designed, the raw material is used to build the
house. In this example, Design of the house is CLASS (blueprint) and the house built on the
basis of design is an object.

No memory is allocated when a class is created. Memory is allocated only when an object is created,
i.e., when an instance of a class is created.

Inheritance:

• Inheritance is the process of forming a new class from an existing class or base class. The
base class is also known as parent class or super class. The new class that is formed is called
derived class.

• Derived class is also known as a child class or sub class. Inheritance helps in reducing the
overall code size of the program, which is an important concept in object-oriented
programming. It is the process by which one class inherits the properties of another Class.

Data Abstraction:
• Data Abstraction increases the power of programming language by creating user defined data

types.
• Data Abstraction also represents the needed information in the program without presenting the

details.

9

The concept of abstraction relates to the idea of hiding data that are not needed for presentation. The
main idea behind data abstraction is to give a clear separation between properties of data type and
the associated implementation details.

An Abstract Data Type is defined as a data type that is defined in terms of the operations that it
supports and not in terms of its structure or implementation.

Data Encapsulation:
• Data Encapsulation combines data and functions into a single unit called class.
• Data Encapsulation enables the important concept of data hiding possible.

Encapsulation is the process of combining data and functions into a single unit called class. Using the
method of encapsulation, the programmer cannot directly access the data. Data is only accessible
through the functions present inside the class.

Data hiding is the implementation details of a class that are hidden from the user.

class MyClass
{public:
int sample();
int example(char *se)
int endfunc();
......... //Other member functions
private:
int x;
float sq;
......... //Other data members
};
In the above example, the data members integer x, float sq and other data members and member
functions sample(),example(char* se),endfunc() and other member functions are bundled and put
inside a single autonomous entity called class MyClass. This exemplifies the concept of
Encapsulation.

Encapsulation alone is a powerful feature that leads to information hiding, abstract data type and
friend functions.

Polymorphism:
Poly means many and morphs mean form, so polymorphism means one name multiple form. There
are two types of polymorphism: compile time and run time polymorphism.Polymorphism allows
routines to use variables of different types at different times. An operator or function can be given
different meanings or functions.
Polymorphism refers to a single function or multi-functioning operator performing in different ways.

Overloading:
• Overloading is one type of Polymorphism.
• It allows an object to have different meanings, depending on its context.
• When an exiting operator or function begins to operate on new data type, or class, it is

understood to be overloaded.

Reusability:
• This term refers to the ability for multiple programmers to use the same written and debugged

existing class of data.
• The programmer can incorporate new features to the existing class, further developing the

application and allowing users to achieve increased performance. .
OOP Term Definition

Method Same as function, but the typical OO notation is used for the call, i.e.
f(x,y) is written x.f(y) where x is an object of class that contains this f

10

method.
Send a message Call a function (method)
Instantiate Allocate a class/struct object (ie, instance) with new
Class A struct with both data and functions
Object Memory allocated to a class/struct. Often allocated with new.
Member A field or function is a member of a class if it's defined in that class
Constructor A member function having same name as that of the class that

initializes data members of an object at the time of creation of the
object.

Destructor Function-like code that is called when an object is deleted to free any
resources (e.g. memory) that is has pointers to. It is automatically
invoked when object goes out of scope.

Inheritance Deriving properties of parent class to the child class.
Polymorphism Defining functions with the same name, but different parameters.
Overload A function is overloaded if there is more than one definition. See

polymorphism.
Sub class Same as child, derived, or inherited class.
Super class Same as parent or base class.
Attribute Same as data member or member field

IMPLEMENTATION OF OOPS IN C++

Classes

Public and Private sections
All member fields in a class are private by default (no code outside the class can reference them),
whereas fields of a struct are public, meaning that anyone can use them. For example,

struct Product {char mfg_id[4]; // 4 char code for the manufacturer.
 char prod_id[8]; // 8-char code for the product
 int price; // price of the product in dollars.
 int qty_on_hand; // quantity on hand in inventory

};
Could be rewritten as a class like this

class Product {
 public:
 char mfg_id[4]; // 4 char code for the manufacturer.
 char prod_id[8]; // 8-char code for the product
 int price; // price of the product in dollars.
 int qty_on_hand; // quantity on hand in inventory

};
A class is an expanded concept of a data structure: instead of holding only data, it can hold both data
and functions.

An object is an instantiation of a class. In terms of variables, a class would be the type, and an object
would be the variable.

Classes are generally declared using the keyword class, with the following format:
class class_name {

 access_specifier_1:
 member1;
 access_specifier_2:
 member2;
 ...
 } object_names;
Where class_name is a valid identifier for the class, object_names is an optional list of names for
objects of this class. The body of the declaration can contain members that can either be data or
function declarations, and optionally access specifiers.

11

All is very similar to the declaration on data structures, except that we can now include also functions
and members, but also this new thing called access specifier. An access specifier is one of the
following three keywords: private, public or protected. These specifiers modify the access rights that
the members following them acquire:

• private members of a class are accessible only from within other members of the same class
or from their friends.

• protected members are accessible from members of their same class and from their friends,
but also from members of their derived classes.

• Finally, public members are accessible from anywhere where the object is visible.
By default, all members of a class declared with the class keyword have private access for all its
members. Therefore, any member that is declared before one other class specifier automatically has
private access. For example:
class CRectangle { int x, y;
 public:
 void set_values (int,int);
 int area (void);
 } rect;
Declares a class (i.e., a type) called CRectangle and an object (i.e., a variable) of this class
called rect. This class contains four members: two data members of type int (member x and
member y) with private access (because private is the default access level) and two member
functions with public access: set_values() and area(), of which for now we have only included their
declaration, not their definition.

Notice the difference between the class name and the object name: In the previous
example, CRectangle was the class name (i.e., the type), whereas rect was an object of type
CRectangle. It is the same relationship int and a have in the following declaration:
int a; where int is the type name (the class) and a is the variable name (the object).

After the previous declarations of CRectangle and rect, we can refer within the body of the program to
any of the public members of the object rect as if they were normal functions or normal variables, just
by putting the object's name followed by a dot (.) and then the name of the member. All very similar to
what we did with plain data structures before. For example:

rect.set_values (3,4);
myarea = rect.area();

The only members of rect that we cannot access from the body of our program outside the class
are x and y, since they have private access and they can only be referred from within other members
of that same class.
Here is the complete example of class CRectangle:
class CRectangle {int x, y;
 public:
 void set_values (int,int);
 int area () {return (x*y);}

};
void CRectangle::set_values (int a, int b) {x = a; y = b;}

int main () {CRectangle rect;
 rect.set_values (3,4);
 cout << "area: " << rect.area();
 return 0;}
The most important new thing in this code is the operator of scope (::, two colons) included in the
definition of set_values(). It is used to define a member of a class from outside the class definition
itself.
You may notice that the definition of the member function area() has been included directly within the
definition of the CRectangle class given its extreme simplicity, where asset_values() has only its
prototype declared within the class, but its definition is outside it. In this outside declaration, we must
use the operator of scope (::) to specify that we are defining a function that is a member of the
class CRectangle and not a regular global function.

12

The scope resolution operator (::) specifies the class to which the member being declared belongs,
granting exactly the same scope properties as if this function definition was directly included within the
class definition. For example, in the function set_values() of the previous code, we have been able to
use the variables x and y, which are private members of classCRectangle, which means they are only
accessible from other members of their class.

The only difference between defining a class member function completely within its class or to include
only the prototype and later its definition, is that in the first case the function will automatically be
considered an inline member function by the compiler, while in the second it will be a normal (not-
inline) class member function, which in fact supposes no difference in behavior.

Members x and y have private access (remember that if nothing else is said, all members of a class
defined with keyword class have private access). By declaring them private we deny access to them
from anywhere outside the class. This makes sense, since we have already defined a member
function to set values for those members within the object: the member function set_values().
Therefore, the rest of the program does not need to have direct access to them. Perhaps in a so
simple example as this, it is difficult to see any utility in protecting those two variables, but in greater
projects it may be very important that values cannot be modified in an unexpected way (unexpected
from the point of view of the object).

One of the greater advantages of a class is that, as any other type, we can declare several objects of
it. For example, following with the previous example of class CRectangle, we could have declared the
object rectb in addition to the object rect:
class CRectangle { int x, y;
 public:
 void set_values (int,int);
 int area () {return (x*y);}
};
void CRectangle::set_values (int a, int b) { x = a; y = b;}
int main () { CRectangle rect, rectb;

 rect.set_values (3,4);
 rectb.set_values (5,6);
 cout << "rect area: " << rect.area() << endl;
 cout << "rectb area: " << rectb.area() << endl;
 return 0;}

In this concrete case, the class (type of the objects) to which we are talking about is CRectangle, of
which there are two instances or objects: rect and rectb. Each one of them has its own member
variables and member functions.
Notice that the call to rect.area() does not give the same result as the call to rectb.area(). This is
because each object of class CRectangle has its own variables x and y, as they, in some way, have
also their own function members set_value() and area() that each uses its object's own variables to
operate.

That is the basic concept of object-oriented programming: Data and functions are both members of
the object. We no longer use sets of global variables that we pass from one function to another as
parameters, but instead we handle objects that have their own data and functions embedded as
members. Notice that we have not had to give any parameters in any of the calls
to rect.area or rectb.area. Those member functions directly used the data members of their
respectiveobjects rect and rectb.

Constructors and Destructors
• Constructors and destructors are special member functions of classes that are used to

construct and destroy class objects. Construction may involve memory allocation and
initialization for objects.

• Destruction may involve cleanup and deallocation of memory for objects.
The following restrictions apply to constructors and destructors:

13

• Constructors and destructors do not have return type, not even void nor can they return
values.

• References and pointers cannot be used on constructors and destructors because their
addresses cannot be taken.

• Constructors cannot be declared with the keyword virtual.
• Constructors and destructors cannot be declared static, const, or volatile.
• Unions cannot contain class objects that have constructors or destructors.
• The compiler automatically calls constructors when defining class objects and calls destructors

when class objects go out of scope.
• A constructor does not allocate memory for the class object its this pointer refers to, but may

allocate storage for more objects than its class object refers to. If memory allocation is
required for objects, constructors can explicitly call the new operator. During cleanup, a
destructor may release objects allocated by the corresponding constructor. To release objects,
use the delete operator.

• Derived classes do not inherit constructors or destructors from their base classes, but they do
call the constructor and destructor of base classes.

• Constructors are also called when local or temporary class objects are created, and
destructors are called when local or temporary objects go out of scope.

• We can call member functions from constructors or destructors.
• Constructor is a member function with the same name as its class.

For example:
class X {

public:
 X(); // constructor for class X

};
• Destructors are usually used to deallocate memory and do other cleanup for a class object

and its class members when the object is destroyed.
• A destructor is called for a class object when that object passes out of scope or is explicitly

deleted.
• A destructor is a member function with the same name as its class prefixed by a ~ (tilde).

For example:
class X { public:

 X(); // Constructor for class X
 ~X(); // Destructor for class X
};

Default Constructors and Destructors
If you don't declare a constructor or a destructor, the compiler makes one for you. The default
constructor and destructor take no arguments and do nothing.
What good is a constructor that does nothing? In part, it is a matter of form. All objects must be
constructed and destructed, and these do-nothing functions are called at the right time.

Using constructors and destructors.
 // Demonstrates declaration of a constructors and
 // destructor for the Cat class
 #include <iostream.h> // for cout
 class Cat // begin declaration of the class
 { public: // begin public section
 Cat(int initialAge); // constructor
 ~Cat(); // destructor
 int GetAge(); // accessor function
 void SetAge(int age); // accessor function
 void Meow();
 private: // begin private section
 int itsAge; // member variable
 };
 Cat::Cat(int initialAge) // constructor definition of Cat,
 { itsAge = initialAge; }

14

 Cat::~Cat() { } // destroy the object of cat when it is no longer referred.
 int Cat::GetAge()
 { return itsAge;}
 void Cat::SetAge(int age)
 { itsAge = age;} // set member variable its age to value passed in by parameter age}
 void Cat::Meow()
 { cout << "Meow.\n";}
 int main()
 { Cat Frisky(5);
 Frisky.Meow();
 cout << "Frisky is a cat who is " ;
 cout << Frisky.GetAge() << " years old.\n";
 Frisky.Meow();
 Frisky.SetAge(7);
 cout << "Now Frisky is " ;
 cout << Frisky.GetAge() << " years old.\n";
 return 0;
 }
Output: Meow.
Frisky is a cat who is 5 years old.
Meow.
Now Frisky is 7 years old.

Copy Constructor
• A copy constructor is a special constructor in the C++ programming language used to create a

new object as a copy of an existing object.
• Normally the compiler automatically creates a copy constructor for each class (known as a

default copy constructor) but for special cases the programmer creates the copy constructor,
known as a user-defined copy constructor. In such cases, the compiler does not create one.

• Copying of objects is achieved by the use of a copy constructor and a assignment operator. A
copy constructor has as its first parameter a reference to its own class type. It can have more
arguments, but the rest must have default values associated with them. The following would
be valid copy constructors for class X:

X(const X& copyFromMe);
X(X& copyFromMe);
X(const X& copyFromMe, int = 10);
X(const X& copyFromMe, double = 1.0, int = 40);

The following cases may result in a call to a copy constructor:
• When an object is returned by value
• When an object is passed (to a function) by value as an argument
• When an object is thrown
• When an object is caught
• When an object is placed in a brace-enclosed initializer list

An object can be assigned value using one of the two techniques:
• Explicit assignment in an expression
• Initialization

Explicit assignment in an expression
Object A;
Object B;
A = B; // translates as Object::operator=(const Object&), thus A.operator=(B) is called
 // (invoke simple copy, not copy constructor!)

Initialization
An object can be initialized by any one of the following ways.
a. Through declaration
Object B = A; // translates as Object::Object(const Object&) (invoke copy constructor)
b. Through function arguments
type function (Object a);
c. Through function return value

15

http://en.wikipedia.org/wiki/Assignment_operator_in_C%2B%2B
http://en.wikipedia.org/wiki/Programmer
http://en.wikipedia.org/wiki/Class_(computer_science)
http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/Object_copy
http://en.wikipedia.org/wiki/Object_(computer_science)
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/Constructor_(computer_science)

Object a = function();
The copy constructor is used only for initializations, and does not apply to assignments where the
assignment operator is used instead.
The implicit copy constructor of a class calls base copy constructors and copies its members by
means appropriate to their type. If it is a class type, the copy constructor is called. By using a user-
defined copy constructor the programmer can define the behavior to be performed when an object is
copied.
Examples
These examples illustrate how copy constructors work and why they are required sometimes.

Implicit copy constructor
Let us consider the following example.
//copy constructor
#include <iostream>
class Person

{ public:
int age;
Person(int a) {age=a;}

};
 int main()

{Person timmy(10);
 Person sally(15);
 Person timmy_clone = timmy;
 cout << timmy.age << " " << sally.age << " " << timmy_clone.age << endl;
 timmy.age = 23;
 cout << timmy.age << " " << sally.age << " " << timmy_clone.age << endl;
 return 0; }

Output
 10 15 10
 23 15 10
As expected, timmy has been copied to the new object, timmy_clone. While timmy's age was
changed, timmy_clone's age remained the same. This is because they are totally different objects.
The compiler has generated a copy constructor for us, and it could be written like this:
Person(Person& copy)
 { age=copy.age; }

INHERITANCE

• Inheritance is the process by which new classes called derived classes are created from
existing classes called base classes.

• The derived classes have all the features of the base class and the programmer can choose to
add new features specific to the newly created derived class.

Features or Advantages of Inheritance:
Reusability:
Inheritance helps the code to be reused in many situations.
The base class is defined and once it is compiled, it need not be reworked.
Using the concept of inheritance, the programmer can create as many derived classes from the base

class as needed while adding specific features to each derived class as needed.
Saves Time and Effort:
The above concept of reusability achieved by inheritance saves the programmer time and effort. The
main code written can be reused in various situations as needed.
Increases Program Structure which results in greater reliability.
General Format for implementing the concept of Inheritance:

class derived_classname: access specifier baseclassname
For example, if the base class is MyClass and the derived class is sample it is specified as:

 class sample: public MyClass
The above makes sample have access to both public and protected variables of base class MyClass.

16

Reminder about public, private and protected access specifiers:
1. If a member or variables defined in a class is private, then they are accessible by
members of the same class only and cannot be accessed from outside the class.
2. Public members and variables are accessible from outside the class.
3. Protected access specifier is a stage between private and public. If a member functions
or variables defined in a class are protected, then they cannot be accessed from outside the
class but can be accessed from the derived class.
Inheritance Example:

class MyClass
{ public:
 MyClass(void) { x=0; }
 void f(int n1)
 { x= n1*5;}
 void output(void) { cout<<x; }
 private:
 int x;
 };
class sample: public MyClass
{ public:
 sample(void) { s1=0; }
 void f1(int n1)
 { s1=n1*10;}
 void output(void)
 { MyClass::output(); cout << s1; }
 private:
 int s1;
 };
 int main(void)
 {sample s;
 s.f(10);
 s.output();
 s.f1(20);
 s.output();
 }

The output of the above program is
50
200

Types of Inheritance
1. Single class Inheritance:

• Single inheritance is the one where you have a single base class and a single derived class.
it is a Base class (super)

it is a sub class (derived)
2. Multilevel Inheritance:

• In Multi level inheritance, a class inherits its properties from another derived class.

it is a Base class (super) of B

it is a sub class (derived) of A
and base class of class C

17

Class Employee

Class Manager

Class B

Class A

derived class(sub) of class B

3. Multiple Inheritances:
• In Multiple inheritances, a derived class inherits from multiple base classes. It has properties

of both the base classes.
 Base class

Derived class
4. Hierarchical Inheritance:

• In hierarchial Inheritance, it's like an inverted tree. So multiple classes inherit from a single
base class. It's quite analogous to the File system in a unix based system.

Base class (super)

Sub Class(derived)

5. Hybrid Inheritance:
• In this type of inheritance, we can have mixture of number of inheritances but this can

generate an error of using same name function from no of classes, which will bother the
compiler to how to use the functions.

• Therefore, it will generate errors in the program. This has known as ambiguity or duplicity.
• Ambiguity problem can be solved by using virtual base classes

2 Marks Question
Practice 1 :- Answer the questions after going through the following class.
class Exam
{char Subject[20] ;

int Marks ;
public :

Exam() // Function 1
{strcpy(Subject, “Computer”) ; Marks = 0 ;}
Exam(char P[]) // Function 2
{strcpy(Subject, P) ;
Marks=0 ;
}

Exam(int M) // Function 3
{strcpy(Subject, “Computer”) ; Marks = M ;}
Exam(char P[], int M) // Function 4

{strcpy(Subject, P) ; Marks = M ;}
};

a) Which feature of the Object Oriented Programming is demonstrated using Function 1,
Function2, Function 3 and Function 4 in the above class Exam?

Ans:- Function Overloading (Constructor overloading)

b) Write statements in C++ that would execute Function 3 and Function 4 of class Exam.
18

Class C

Class A

Class B Class C

Class A Class B

Class C

Class A

Class B

Class D

Class C

Class D

Ans:- Exam a(10); and Exam b(“Comp”, 10);

Practice 2: Consider the following declaration :
class welcome
{public:

welcome (int x, char ch); // constructor with parameter
welcome(); // constructor without parameter
void compute();

private:
int x; char ch;

};
which of the following are valid statements

welcome obj (33, ‘a9’);
welcome obj1(50, ‘9’);
welcome obj3();
obj1= welcome (45, ‘T’);
obj3= welcome;

Ans. Valid and invalid statements are
welcome obj (33, ‘a9’); valid
welcome obj1(50, ‘9’); valid
welcome obj3(); invalid
obj1= welcome (45, ‘T’); valid
obj3= welcome; invalid

Access public protected Private
members of the same class yes yes Yes
members of derived classesyes yes No
not members yes no No

Practice 3: What do you mean by visibility modes? What is their effect on inheritance?

Practice 4: Explain different types of inheritance.

4 Marks Questions
Practice1 :- Consider the following declarations and answer the questions given below:
class vehicle

{int wheels;
protected:
int passenger;
public:
void inputdata(int, int);
void outputdata();};
class heavyvehicle: protected vehicle
{int dieselpetrol;
protected:
int load;
public:
void readdata(int, int);

19

void writedata();};
class bus:private heavyvehicle
{char marks[20];
public:
void fetchdata(char);
void displaydata();};

(i) Name the class and derived class of the class heavyvehicle.
(ii) Name the data members that can be accessed from function displaydata()
(iii) Name the data members that can be accessed by an object of bus class
(iv) Is the member function outputdata() accessible to the objects of heavyvehicle class.

Ans
(i) Base class = vehicle and derived class = bus
(ii) The data members passenger, load, make are available to function display data
(iii) No data members can be accessed by the object of bus calss.
(iv) No member functions outputdata () is not accessible to the objects of heavy vehicle

class.

Practice2 :- Consider the following declarations and answer the questions given
below:
#include <iostream.h>

class book
{char title[20];
char author[20];
int noof pages;
public:

void read();
void show();};

class textbook: private textbook
{int noofchapters, noofassignments;
protected:
int standard;
void readtextbook();
void showtextbook();};
class physicsbook: public textbook
{char topic[20];
public:
void readphysicsbook();
void showphysicsbook();};

(i) Name the members, which can be accessed from the member functions of class
physicsbook.

(ii) Name the members, which can be accessed by an object of Class textbook.
(iii) Name the members, which can be accessed by an object of Class physicsbook.
(iv) What will be the size of an object (in bytes) of class physicsbook.

Ans
(i) standard , readtextbook(),showtextbook() and topic;
(ii) readtextbook() and showtextbook()
(iii) readphysicsbook(), showphysicsbook(), readtextbook() and showtextbook()
(iv) The size of object of physicsbook= size of book + size of Textbook + size of

physicsbook.
= 42+6+20 = 68 bytes

Practice3 : Answer the questions (i) to (iv) based on the following:
Class CUSTOMER
{ int Cust_no;

char Cust_Name[20];
protected:

20

void Register();
public:

CUSTOMER();
void Status();};

class SALESMAN
{ int Salesman_no;

char Salesman_Name[20];
protected:
 float Salary;
public:
SALESMAN();
void Enter();
void Show();};

class SHOP : private CUSTOMER, public SALESMAN
{ char Voucher_No[10];

char Sales_Date[8;
public :

 SHOP();
void Sales_Entry();
void Sales_Detail();};

(i) Write the names of data members, which are accessible from object belonging
to class CUSTOMER.

(ii) Write the names of all the member functions which are accessible from object
belonging to class SALESMAN.

(iii) Write the names of all the members which are accessible from member
functions of class SHOP.

(iv) How many bytes will be required by an object belonging to class SHOP?

Practice 4: Define a class HOTEL in C++ with the following description:
Private Members

• Rno //Data Member to store Room No
• Name //Data Member to store customer Name
• Tariff //Data Member to store per day charge
• NOD //Data Member to store Number of days
• CALC //A function to calculate and return amount as NOD*Tariff and if the

value of NOD*Tariff is more than 10000 then as 1.05*NOD*Tariff
Public Members:
Checkin() //A function to enter the content RNo,Name, Tariff and NOD
Checkout() //A function to display Rno, Name, Tariff, NOD
and Amount (Amount to be displayed by calling function CALC()

Solution
 #include<iostream.h>

class HOTEL
{ unsigned int Rno;

char Name[25];
unsigned int Tariff;
unsigned int NOD;
int CALC()
{ int x;

x=NOD*Tariff;
if(x>10000)
return(1.05*NOD*Tariff);
else
return(NOD*Tariff);

}
public:

21

void Checkin()
{cin>>Rno>>Name>>Tariff>>NOD;}
void Checkout()
{cout<<Rno<<Name<<Tariff<<NOD<<CALC();}
};
void main()
{HOTEL s1;
s1.Checkin();
s1.Checkout();
}

22

DATA FILE HANDLING IN C++

Key Points:
• Text file: A text file stores information in readable and printable form. Each line of text is

terminated with an EOL (End of Line) character.
• Binary file: A binary file contains information in the non-readable form i.e. in the same format in

which it is held in memory.
• Stream: A stream is a general term used to name flow of data. Different streams are used to

represent different kinds of data flow.
• There are three file I/O classes used for file read / write operations.

o ifstream - can be used for read operations.
o ofstream - can be used for write operations.
o fstream - can be used for both read & write operations.

• fstream.h:
• This header file includes the definitions for the stream classes ifstream, ofstream and fstream.

In C++ file input output facilities implemented through fstream.h header file.
• It contain predefines set of operation for handling file related input and output, fstream class

ties a file to the program for input and output operation.
• A file can be opened using:

o By the constructor of the stream. This method is preferred when single file is used with
the stream.

o By the open() function of the stream.
• File modes:

• ios::out It creates file in output mode and allows writing into the file.
• ios::in It creates file in input mode and permit reading from the file.
• ios::app To retain the previous contents of the file and to append to the

end of existing file.
• ios::ate To place the file pointer at the end of the file, but you can write

data any where in the file.
• ios::trunc It truncates the existing file (empties the file).
• ios::nocreate If file does not exist this file mode ensures that no file is

created and open() fails.
• ios::noreplace If file does not exist, a new file gets created but if the file

already exists, the open() fails.
• ios::binary – Opens a file in binary mode.

eof(): This function determines the end-of-file by returning true(non-zero) for end of file otherwise
returning false(zero).

open():If you want to manage multiple file with same stream use open().
Stream_object.open(“Filename”,(Filemode));
e.g., fstream fio;
fio.open(“book.dat”, ios::in | ios::out | ios::binary);
The operator | is known as bitwise-OR operator.

close(): This function terminates the connection between the file and stream associated with it.
Stream_object.close();

read(): The read() function reads a fixed number of bytes from the specified stream and puts them in
the buffer.

Stream_object.read((char *)& Object, sizeof(Object));
write(): The write() function writes fixed number of bytes from a specific memory location to the

specified stream.
Stream_object.write((char *)& Object, sizeof(Object));

Note:
Both functions take two arguments.
•The first is the address of variable, and the second is the length of that variable in bytes. The

address of variable must be type cast to type char*(pointer to character type)
23

•The data written to a file using write() can only be read accurately using read().

 file pointer: the file pointer indicates the position in the file at which the next input/output is to
occur.
 seekg(): It places the file pointer to the specified position in a stream before input operation.
 seekp(): It places the file pointer to the specified position in a stream before output operation.
 tellg(): This function returns the current position of the file pointer in a stream.
 tellp(): This function returns the current position of the file pointer in a stream.
 Steps To Process A File

• Declare an opbject of the desired file stream class(ifstream, ofstream, or fstream)
• Open the required file to be processed using constructor or open function.
• Process the file.
• Close the file stream using the object of file stream.

Exercise: 1 Mark Questions
1. Observe the program segment carefully and answer the question that follows:

class item
{int item_no;
char item_name[20];
public:
void enterDetail();
void showDetail();
int getItem_no(){ return item_no;}
};
void modify(item x, int y)
{fstream File;
File.open(“item.dat”, ios::binary | ios::in | ios::out) ;
item i;
int recordsRead = 0, found = 0;
while(!found && File.read((char*) &i , sizeof (i)))

{recordsRead++;
if(i. getItem_no() == y)

{_________________________//Missing statement
File.write((char*) &x , sizeof (x)); found = 1;
}

}
if(! found)
cout<<”Record for modification does not exist” ;
File.close() ;
}
If the function modify() is supposed to modify a record in the file “ item.dat “, which item_no is
y, with the values of item x passed as argument, write the appropriate statement for the
missing statement using seekp() or seekg(), whichever is needed, in the above code that
would write the modified record at its proper place.

24

e.g
ifstream fin(“book.txt”);
char ch;
fin>>ch; //fin.get(ch);
cout<<ch;

Open file book.txt,
read file and
display the character
from the file.

e.g,:
ofstream fout(“book.txt”);
char ch;
cin>>ch;
fout<<ch; // fout.put(ch);

Create and open file
book.txt, write data
into file from the
variable.

If the function modify() modifies a record in the file “ item.dat “ with the values of item x
passed as argument, write the appropriate parameter for the missing parameter in the above
code, so as to modify record at its proper place.

Ans.1. File.seekp((recordsRead-1)*sizeof(x),ios::beg); or File.seekp(-1*sizeof(x),ios::cur);

General program structure used for operating a Text File

2 Marks Questions

Text files in input mode:
Write a function in a C++ to count the number of lowercase alphabets present in a text file
“BOOK.txt”.
int countalpha()
{ ifstream Fin(“BOOK.txt”);

char ch;
int count=0;
while(!Fin.eof())

{Fin.get(ch);
if (islower(ch))

count++;
}

Fin.close();
return count;

}

Function to calculate the average word size of a text file.
void calculate()
{ fstream File;

File.open(“book.txt”,ios::in);
char a[20];
char ch;
int i=0,sum=0,n=0;
while(File)
{ File.get(ch);

a[i]=ch;
i++;
if((ch==’ ‘) || ch(== ‘.’)||(char==’,’)(ch==’\t’)||(ch==’\n’)

{i --; sum=sum +i;
i=0; N++;

}
}

cout<<”average word size is “<<(sum/n);
}

Assume a text file “coordinate.txt” is already created. Using this file create a C++ function to
count the number of words having first character capital.
int countword()
{ ifstream Fin(“BOOK.txt”);

char ch[25];
int count=0;
while(!Fin.eof())

{Fin>>ch;
if (isupper(ch[0]))

count++;
}

Fin.close();
return count;

25

}

Function to count number of lines from a text files (a line can have maximum 70 characters or
ends at ‘.’)
int countword()
{ ifstream Fin(“BOOK.txt”);

char ch[70];
int count=0;
if (!Fin)
{ cout<<”Error opening file!” ;

exit(0);
}
while(1)
{Fin.getline(ch,70,‘.’);

if (Fin.eof())
break;

count++;
}
Fin.close();
return count;

}

A program to display the size of a file in bytes.
#include<iostream.h>
#include<fstream.h>
#include<process.h>
#include<conio.h>
int main()
{

char filename[13];
clrscr();
cout<”Enter Filename:\n”;
cin.getline(filename,13);
ifstream infile(filename);
if(!infile)

{cout>>”sorry ! Can not open “<<filename <<”file\n”;
exit(-1);
}

long no_bytes=0;
char ch;
infile.seekg(0,ios::end);
no_bytes=infile.tellg();
cout<<”File Size is”<<no_bytes<<”bytes\n”;
return 0;

}

Text files in output mode:
C++ program, which initializes a string variable to the content “There is an island of opportunity in the
middle of every difficulty.” and output the string one character at a time to the disk file “OUT.TXT”.
#include<fstream.h>
int main()
{ ofstream fout(“OUT.TXT”);

char *str = ”There is an island of opportunity in the middle of every difficulty.” ;
int i=0;
if(!fout)
{

cout<<”File cannot be opened “;
return 0;

26

}
while (str[i]!=’\0’)
{fout<<str[i];

i++;
}
fout.close();

}

Exercise: (2 Marks Questions)
1. te a function in a C++ to count the number of uppercase alphabets present in a text file

“BOOK.txt”
2. Write a function in a C++ to count the number of alphabets present in a text file “BOOK.txt”
3. Write a function in a C++ to count the number of digits present in a text file “BOOK.txt”
4. Write a function in a C++ to count the number of white spaces present in a text file “BOOK.txt”
5. Write a function in a C++ to count the number of vowels present in a text file “BOOK.txt”
6. Write a function in a C++ to count the average word size in a text file “BOOK.txt”
7. Write a function in C++ to print the count of the word “the” as an independent word in a text file

STORY.TXT.
For example, if the content of the file STORY.TXT is

There was a monkey in the zoo.
The monkey was very naughty.

Then the output of the program should be 2.

8. Assume a text file “Test.txt” is already created. Using this file, write a function to create three
files “LOWER.TXT” which contains all the lowercase vowels and “UPPER.TXT” which contains
all the uppercase vowels and “DIGIT.TXT” which contains all digits.

9. Create a function FileLowerShow() in c++ which take file name(text files)as a argument and
display its all data into lower case

10. Write a function in C++ to count the number of lines present in a text file “Story.txt”.

HOTS FILE HANDLING
1. Write a function in a C++ to count the number of consonants present in a text file “Try.txt”
2. Write a function in a C++ to count the number of uppercase vowels present in a text file

“Novel.txt”
3. Write a function in a C++ to display the sum of digits present in a text file “Fees.txt”.
4. Write a function in a C++ to display the product of digits present in a text file “Number.txt”.
5. Write a function in a C++ to find the largest digit present in a text file “Marks.txt”

3 Marks Questions

General program structure used for operating a Binary File

Program to read and write a structure using read() and write() using binary file.

struct student
{
char name[15];
float percent;
};
void main()
{

clrscr();
student s;
strcpy(s.name,”rasha”);
s.percent=89.50;
ofstream fout;
fout.open(“saving”, ios::out | ios:: binary);
if(!fout)

27

{
cout<<“File can’t be opened”;
break;

}
fout.write((char *) &s, sizeof(student));
fout.close();
ifstream fin;
fin.open(“saving”,ios::in | ios:: binary);
fin.read((char *) & s,sizeof(student));
cout<<s.name;
cout<<“\n has the percent: ”<<s.percent;
fin.close();

}

Function to add more objects belonging to class JOKE at the end of JOKES.DAT file.
class JOKE{int jokeid; char type[5], jokedesc[200];

public:
void Newjokeentry(){cin>>jokeid>>type; cin.getline(jokedesc,200);}
void showjoke(){cout<<jokeid<<”\t”<<type<<endl<<jokedesc<<endl;}
};

void append()
{

fstream afile;
afile.open(“JOKES.DAT”, ios::binary | ios::app);
JOKE j;

 int n,i;
 cout<<”How many objects you want to add :”;
 cin>>n;
 for (i=0;i<n;i++)

{
 j.Newjokeentry();
 afile.write((char *)& j, sizeof (JOKE));

}
afile.close();

}

Given a binary file TELEPHONE.DAT, containing records of the following class Directory
class Directory
{ char name[20],address[30], areacode[5], phone_no[15];
public:

void register();
void show();
int checkcode(char AC[]) { return strcmp(areacode, AC);}

};

Write a function COPYABC() in C++, that would copy all those records having areacode as
“123” from TELEPHONE.DAT to TELEBACK.DAT
COPYABC()
{ifstream ifile(“TELEPHONE.DAT”,ios::in|ios::binary);
 If(!ifle) { cout<<”could not open TELEPHONE.DAT”; exit(-1);}
else

{ofstream ofile(“TELEBACK”,ios::out|ios::bainary);
if(!ofile) {cout<<”could not open TELEBACK.DAT”; exit(-1);}
else

 {Directory d;
 while(ifile.read((char *)&d, sizeof(d)))

{if(d.checkcode(“123”)==0)
Ofile.write((char *)&d,sizeof(d));

}
28

 ifile.close();
 ofile.close();
}

}
}

Exercise :3 Marks Question
2. Write a function in C++ to search for a BookNo from a binary file “BOOK.DAT”,

assuming the binary file is containing the objects of the following class.
class BOOK
{
int Bno;
char Title[20];
public:
int RBno(){return Bno;}
void Enter(){cin>>Bno;gets(Title);}
void Display(){cout<<Bno<<Title<<endl;}
};

3. Write a function in C++ to add new objects at the bottom of a binary file
“STUDENT.DAT”, assuming the binary file is containing the objects of the following
class.
class STUD
{int Rno;
char Name[20];
public:
void Enter()
{cin>>Rno;gets(Name);}
void Display(){cout<<Rno<<Name<<endl;}
};

29

POINTERS

Pointer is a memory variable which can store address of an object of specified data type. For
example:

#include<iostream.h>
void main()
{int x=5;
int *a;//here ‘a’ is a pointer to int which can store address of an object of type int
a=&x;//address of x is assigned to pointer ‘a’
cout<<”Value of x is : “<<x<<endl;
cout<<”Address of x is : “<<&x<<endl;
cout<<”Address stored in a is : “<<a<<endl;
cout<<”Values stored at memory location pointed by a is : “<<*a<<endl;
cout<<”Address of a is :“<<&a<<endl;
}
output:
Value of x is : 5
Address of x is : 65524
Address stored in a is : 65524
Value stored at memory location pointed by a is : 5
Address of a is : 65522
In the above example the &x gives address of x which in this case happen to be 65524 and
dereference operator * gives the value stored in the memory location stored in pointer variable ‘a’ as
shown in the figure below.

 65520 65522 65524 65526 65528
65524 5

 a x
Some properties of pointer variables
 Since a pointer variable stores address of another variable in memory, we must understand
the way C++ organizes memory for its program. We can view memory as linear sequence of bytes
where every byte has a unique address. For example, if you have 64 Kbytes memory i.e.
64x1024=65536 Bytes, then the address number can be any value between 0 and 65535 as
illustrated in the figure given below.

Address Content
0
1
2
3
4
. .
. .
. .

65533
65534
65535

An executable program generated after by C++ compiler is divided in three different segments. These
segments are Code Segment (holds instruction of the program), Data Segment (Hold global and static
variables of the program) and Stack Segment (holds local variables and return addresses used in the
program). Code Segment may have one block of 64KB or multiple blocks of 64KB each depending on
memory model used in the program compilation. Data Segment and stack segment shares common
block of one block of 64KB or multiple blocks of 64KB each depending on memory model used in
program compilation. The free space between Data Segment and Code Segment is known as
Memory Heap or Free Store which is used in Dynamic(Run Time) memory allocation.

30

Pointers and Arrays in C++
The concept of array is very

much bound to the one of pointer. In
fact, the identifier of an array is
equivalent to the address of its first
element, as a pointer is equivalent to the
address of the first element that it points
to, so in fact they are the same concept.
For example, supposing these two
declarations:
int b[20];
int * p;
The following assignment operation
would be valid:
p = b;
After that, p and b would be equivalent
and would have the same properties.
The only difference is that we could
change the value of pointer p by another
one, whereas b will always point to the
first of the 20 elements of type int with
which it was defined. Therefore, unlike
p, which is an ordinary pointer, b is an
array, and an array can be considered a
constant pointer. Therefore, the

following assignment statement would not be valid:
b= p;
Because b is an array, so it operates as a constant pointer, and we cannot assign values to
constants. Due to the characteristics of variables, all expressions that include pointers in the following
example are perfectly valid:

#include <iostream.h>
int main ()
{int b[5];
int * p;
p = b;
p[0] = 10; // p[0] and *p refers to the same value i.e. b[0]
p++;
*p = 20;
p = &b[2];
*p = 30;
p = b + 3;
*p = 40;
p = b;
(p+4) = 50; //(p+4) and p[4] refers to the same value i.e. b[4]
p=b;
for (int n=0; n<5; n++)

cout << p[n] << ", ";
cout<<endl;
for (int n=0; n<5; n++)

cout << *(b+n) << ", ";
return 0;
}
Output is

Offset
Address Content

0

Code
Segment

Se
gm

en
t n

o
81

1
2
3
4
.
.
.

65533
65534
65535

0
Data

Segment

Se
gm

en
t n

o
82

1
2
.
. Heap or

Free
Store

.

.

.
Stack

Segment
.

65534
65535

31

10, 20, 30, 40, 50,
10, 20, 30, 40, 50,
 Note: A pointer variable can be used as an array as in above example both *p and p[0] refers to the
same variable similarly b[0] and *b refers to the same variable. Again p[1] and *(p+1) are same.

Address calculation method is same for both pointer and array. For example
int a[5]={2,4,6,7,9};
int *q=a;

The address of a[index] is calculated as
Base address of a (i.e. address of a[0]) + index * sizeof (data type of a)

for example if the base address of a is 1000 then address of a[3] is calculated as
&a[3] =1000 + 3 * sizeof (int) = 1000 + 3 * 2=1000 + 6 = 1006
Note that a[3] and *&a[3] both will give the same value i.e. 7

Similarly address of (q+3) is calculated as
Address stored in q + 3 * sizeof (data type of pointer belongs to in this case int)
 (q+3) = 1000 + 3 * sizeof (int) = 1000 + 3 * 2=1006

Arithmetic operation on pointers
We can increment or decrement a pointer variable for example
float a[5]={3.0,5.6,6.0,2.5,5.3};
float *p=a;
++p;
--p;
if the base address of a is 1000 then statement ++p will increment the address stored in pointer
variable by 4 because p is a pointer to float and size of a float object is 4 byte, since ++p is equivalent
to p=p+1 and address of p+1 is calculated as

Address stored in p + 1 * sizeof (float)= 1000 + 1 * 4 = 1004.
We can add or subtract any integer number to a pointer variable because adding an integer value to
an address makes another address e.g.
void main()
{int p[10]={8,6,4,2,1};
Int *q;
q=p;//address of p[0] is assigned to q assuming p[0] is allocated at memory location 1000
q=q+4;//now q contains address of p[4] i.e. 1000+4*sizeof(int)=1000+4*2= 1008
cout<<*q<<endl;
q=q-2;//now q contains address of p[2] i.e. 1008-2*sizeof (int)=1008-2*2=1004
cout<<*q<<endl;
 }
Output is
1
4

Addition of two pointer variables is meaningless.
Subtraction of two pointers is meaningful only if both pointers contain the address of different
elements of the same array
For example
void main()
{int p[10]={1,3,5,6,8,9};
int *a=p+1,*b=p+4;
p=p+q; //error because sum of two addresses yields an illegal address
int x=b-a; //valid
cout<<x;
}
Output is
3
In the above example if base address of a is 1000 then address of a would be 1002 and address of b
would be 1008 then value of b-a is calculated as

32

(Address stored in b-address stored in a)/sizeof(data type in this case int)
(1008-1002)/2=3

Multiplication and division operation on a pointer variable is not allowed
We cannot assign any integer value other than 0 to a pointer variable.
For example
int *p;
p=5; //not allowed
p=0; //allowed because 0 is a value which can be assigned to a variable of any data type

Null Pointer
A null pointer is a regular pointer of any pointer type which has a special value that indicates that it is
not pointing to any valid reference or memory address. This value is the result of type-casting the
integer value zero to any pointer type.
int *q=0; // q has a NULL pointer value
float * p;
p=NULL; // p has a NULL (NULL is defined as a constant whose value is 0) pointer value

Note: 0 memory address is a memory location which is not allocated to any variable of the
program.

void pointers
void pointer is a special pointer which can store address of an object of any data type. Since void
pointer do not contain the data type information of the object it is pointing to we can not apply
dereference operator * to a void pointer without using explicit type casting.
void main()
{
int x=5;
float y=3.5;
int *p;
float *q;
void *r;
p=&y; //error cannot convert float * to int *
q=&x; //error cannot convert int * to float *
p=&x; //valid
cout<<*p <<endl; //valid
q=&y; //valid
cout<<*q<<endl ; //valid
r=&x; //valid
cout<<*r<<endl; //error pointer to cannot be dereference without explicit type cast
cout<<*(int *)r<<endl; // valid and display the values pointed by r as int
r=&y; //valid
cout<<*(float *)r<<endl; //valid and display the values pointed by r as float
}

Note: Pointer to one data type cannot be converted to pointer to another data type except
pointer to void

Array of pointers and pointer to array
An array of pointer is simply an array whose all elements are pointers to the same data type.
For example
Void main()
{
float x=3.5,y=7.2,z=9.7;
float *b[5]; // here b is an array of 5 pointers to float
b[0]=&x;
b[1]=&y;
b[2]=&z;
cout<<*b[0]<<”\t”<<*b[1]<<”\t”<<*b[2]<<endl;

33

cout<<sizeof(b)<<sizeof(b[0])<<sizeof(*b[0]) ;
 }
Output is
3.5 7.2 9.7
10 2 4
In the above example the expression sizeof(b) returns the number of bytes allocated to b i.e. 10
because array b contain 5 pointers to float and size of each pointer is 2 bytes. The expression
sizeof(b[0]) returns the size of first pointer of the array b i.e. 2bytes. The expression sizeof(*b[0])
returns the size of the data type the pointer b[0] points to which is float, so the expression returns 4 as
output.

Pointer to array is a pointer which points to an array of for example
void main()
{
float a[10], b[5],c[10];
float (*q)[10]; //here q is a pointer to array of 10 floats
q=&a; //valid
q=&c; //valid
q=&b; //error cannot convert float [5]* to float [10]*
cout<<sizeof(q)<<”\t”sizeof(*q)
}
After removing the incorrect statement q=&b from the program the output of the program is
2 40
Because q is a pointer and pointer to any thing is and address which is of 2bytes. But sizeof(*q)
returns the size of an array of 10 floats i.e. 40 because *q points to an array of 10 floats.

Pointers to pointers
C++ allows the use of pointers that point to pointers, that these, in its turn, point to data (or even to
other pointers). In order to do that, we only need to add an asterisk (*) for each level of reference in
their declarations:
Void main()
{
int x=5;
int *a; // a is pointer to int
int **b; //b is pointer to pointer to int
int ***c; //c is pointer to pointer to pointer to int
a=&x;
b=&a;
c=&b;
cout<<x<<”\t”<<*a<<”\t”<<**b<<”\t”<<***c<<endl;
}
Output is
5 5 5 5

Assuming variable x, a, b, c are allocated randomly at memory location 9000, 8000, 7000, and 6000
respectively. The value of each variable is written inside each cell; under the cells are their respective
addresses in memory.

6000 7000 8000 9000
7000 8000 9000 5

• c has type int*** and a value of 7000
• *c has type int ** and a value of 8000
• **c has type int * and a value of 9000
• ***c has type int and a value of 5

Pointer to constant and constant pointer

34

int x=5, z=7 ;
const int y=8;
const int *p; // here p is pointer to const int
int * const q=&x; // here q is constatnt pointer to int
int * const r; //error constant pointer must be initialized
p=&x; // valid since int * can be converted to const int *
*p=3; // error cannot modify const object
*q=3; //valid
q=&z; //error
int * const s=&y;// error cannot convert const int * to int *
const int * const b= &x; //legal
const int * const c=&y; //legal
*b=2;//error cannot modify const object
 b=c; // error cannot modify const object

Static memory allocation and Dynamic memory allocation
If memory allocation is done at the time of compilation of the program then memory allocation is
known as static memory allocation. For example memory allocation for variables and arrays are done
at compilation of the program as size of variable and arrays are already known at the time of
compilation of the program.
Dynamic memory allocation is the memory allocation required during execution of the program. For
example if the amount of memory needed is determined by the value input by the user at run time.
Dynamic memory allocation using new operator
Int *a=new int(5); /* new operator will create an int object somewhere in memory heap
 and initialize the object with value 5 and returns address of the

 object to pointer variable a */
int n;
cin>>n;
Int *b=new int[n]; /*here new operator will create an array of 5 int and return the base

 address of the allocated array to pointer variable b */
 If the new operator fails to allocate memory then it returns NULL value which indicates that the
required memory is not available for the requested instruction.
Note: We cannot create array of variable length for example
Int n;
Cin>>n;
Int a[n]; // error because we can use only constant integral value in array declaration
const int p=3;
int a[p]; //legal

Operators delete and delete[]
Since the necessity of dynamic memory is usually limited to specific moments within a program, once
it is no longer needed it should be freed so that the memory becomes available again for other
requests of dynamic memory. This is the purpose of the operator delete, whose format is:

delete pointer; //used to delete the memory allocated for single object
delete pointer[];//used to delete the memory allocated for array of objects

The value passed as argument to delete must be either a pointer to a memory block previously
allocated with new, or a null pointer (in the case of a null pointer, delete produces no effect).

void main()
{int n;
 Int *q;
cout<<”enter no of integers required :”;
cin>>n;
q=new int [n];
if(q==NULL)

35

cout<<”memory could not be allocated”;
else
 {for(int i=0;i<n;i++)

q[i]=i+1;
for(i=0;i<n;i++)
cout<<q[i]<<” “;
delete q[];
}

}
For n=3 and successful memory allocation the output of the program would be
1 2 3
Otherwise on failure of new operator the message “memory could not be allocated” would be the
output.
It is always a good habit to check the pointer with NULL value to make sure that memory is allocated
or not.

Memory leaks
If dynamically allocated memory has become unreachable (no pointer variable is pointing the
allocated memory) then such situation is known as memory leak because neither it can be accessed
nor it can be deleted from the memory heap by garbage collection. For example
void function1()
{
int x=5;
int *p;
p=new int [100]; // dynamic memory allocation for an array of 100 integers
p=&x;
}
In the above example the statement p=new int [100] assign the address of the dynamically allocated
memory to p and the next statement p=&x assign the address of x to p therefore, after that the
dynamically allocated memory become unreachable which cause memory leak.

Pointer to structure
struct emp
{
int empno;
char name[20];
float sal;
};
void main()
{
emp e1={5,”Ankit Singh”, 30000.0};
emp *p=&e1;
cout<<p->empno<<”\t”<<p->name<<”\t”<<p->sal<<endl;
p->sal=p->sal + p->sal*3.0/100;
cout<<(*p).empno<<”\t”<<p->name<<”\t”<<(*p).sal;
}
Output is
5 Ankit Singh 30000.0
5 Ankit Singh 30900.0

this pointer
When an object of a class invokes a member function then a special pointer is implicitly passed to the
member function which contains the address of the object by which the function is being called, this
special pointer is known as this pointer. For example

#include<iostream.h>
class A

36

{int x;
 public:
void input()
{ cout<<”enter a number :“;
 cin>>x;
}
void output()
{cout<<”address of the object is :“<<this<<endl;
 cout<<this->x<<”\t”<<x<<endl ; // both this->x and x will give the same value i.e. value of
 }
void main()
{
A a1, a2;
a1.input();
a2.input();
a1.output();
a2.output();
}
Output is
enter a number : 5
enter a number : 8
address of the object is : 65524 //assuming that a1 is allocated at memory location 1000
5 5
address of the object is : 65522 //assuming that a2 is allocated at memory location 998
8 8

 65520 65522 65524 65526 65528
8 5

 a2 a1
Note: the this pointer does not exist outside the member function, i.e. we cannot define or access this
pointer in main function because this pointer comes into existence only when a member function of a
class is invoked by an object of the class.

2 Marks Questions

Exercise
1. Give the output of the following program:
void main()
{char *p = “School”;
char c;
c = ++ *p ++;
cout<<c<<“, ”<<p<<endl;
cout<<p<<“, ”<<++*p- -<<“, ”<<++*p++;
}

2. Give the output of the following program:
void main()
{int x [] = {50, 40, 30, 20, 10}:
int *p, **q, *t;
p = x;
t = x + 1;
q = &t;
cout << *p <<“, ” << **q << “,” << *t++;
}

3. Give the output of the following program (Assume all necessary header files are included):
void main()
{char * x = “TajMahal”;

37

char c;
x=x+3 ;
c = ++ *x ++;
cout<<c<<”, “;
cout<< *x<<“, ”<<- -*x++<<- -x ;
}

4. Give the output of the following program (Assume all necessary header files are included):
void main()
{char *x = “Rajasthan”;
char c;
c = (*(x+3))++ ;
cout<<c<<“, ”<<x<<“, ”<<sizeof(x)<< “, ”<<sizeof(x+3)<< “, ”<<strlen(x+3);
}

5. What will be the output of the program (Assume all necessary header files are included):
void print (char * p)
{int i=0;
while(*p)

*p=*p++ + i++;
cout<<"value is "<<p-i+2<<endl;
}
void main()
{char * x = "Mumbai";
print(x);
cout<<"new value is "<<x<<endl;
}

6. . Identify the errors if any. Also give the reason for errors.
#include<iostream.h>
void main()
{int b=4;
const int i =20;
const int * ptr=&i;
(*ptr)++;
ptr =&j;
cout<<*ptr;
}

7. Identify errors on the following code segment
void main()
{float c[] ={ 1.2,2.2,3.2,56.2};
float *k,*g;
k=c;
g=k+4;
k=k*2;
g=g/2;
k=k+g;
c=k;
cout<<”*k=”<<*k<<”*g=”<<*g;
}

8. What will be the output of the program (Assume all necessary header files are included):
void main()
{int a[]={4,8,2,5,7,9,6}
int x=a+5,y=a+3;
cout<<++*x- -<<”,”<<++*x- -<<”,”<<++*y++<<”,”<<++*y- -;
}

38

9. What will be the output of the program (Assume all necessary header files are included):
void main()
{int arr[] = {12, 23, 34, 45};
int *ptr = arr;
int val = *ptr ; cout << val << endl;
val = *ptr++; cout << val << endl;
val = *ptr; cout << val << endl;
val = *++ptr; cout << val << endl;
val = ++*ptr; cout << val << endl;
}

3 Marks Questions

1.Give output of following code fragment assuming all necessary header files are included:
void main()
{char *msg = “Computer Science”;
for (int i = 0; i < strlen (msg); i++)
if (islower(msg[i]))
msg[i] = toupper (msg[i]);
else
if (isupper(msg[i]))
if(i % 2 != 0)
msg[i] = tolower (msg[i-1]);
else
msg[i--];
cout << msg << endl;
}

2. What will be the output of the program (Assume all necessary header files are included):
void main()
{clrscr();
int a =32;
int *ptr = &a;
char ch = ‘A’;
char *cho=&ch;
cho+=a; // it is simply adding the addresses.
*ptr + = ch;
cout<< a << “” <<ch<<endl;
}

3. What will be the output of the program (Assume all necessary header files are included):
void main()
{char *a[]={“DELHI”, “MUMBAI”,”VARANSAI”};
char **p;
p=a;
cout<<sizeof(a)<<”, “<<sizeof(a[0])<<”, “<<sizeof(p)<<endl;
cout<< p << “, ”<<++*p<<“, ”<<*++p<<endl;
cout<< **a << “, ” <<*(a+1)<<“, ” <<a[2]<<endl;
}

39

Data Structure

In Computer Science, a data structure is a particular way of storing and organizing data in a
computer so that it can be used efficiently. Different kinds of data structures are suited to different
kinds of applications, and some are highly specialized to specific tasks.

The data structure can be classified into following two types:
Simple Data Structure: These data structures are normally built from primitive data types like
integers, floats, characters. For example arrays and structure.
Compound Data Structure: simple data structures can be combined in various ways to form more
complex structure called compound structures. Linked Lists, Stack, Queues and Trees are examples
of compound data structure.

Data Structure Arrays
Data structure array is defined as linear sequence of finite number of objects of same type
with following set of operation:

• Creating : defining an array of required size
• Insertion: addition of a new data element in the in the array
• Deletion: removal of a data element from the array

40

• Searching: searching for the specified data from the array
• Traversing: processing all the data elements of the array
• Sorting : arranging data elements of the array in increasing or decreasing order
• Merging : combining elements of two similar types of arrays to form a new array of same type

In C++ an array can be defined as
Datatype arrayname[size];

Where size defines the maximum number of elements can be hold in the array. For example
float b[10];//b is an array which can store maximum 10 float values
int c[5];

Array initialization
Void main()
{
int b[10]={3,5,7,8,9};//
cout<<b[4]<<endl;
cout<<b[5]<<endl;
}
Output is
9
0
In the above example the statement int b[10]={3,5,7,8,9} assigns first 5 elements with the given
values and the rest elements are initialized with 0. Since in C++ index of an array starts from 0 to
size-1 so the expression b[4] denotes the 5th element of the array which is 9 and b[5] denotes 6th

element which is initialized with 0.
3 5 7 8 9 0 0 0 0 0

b[0] b[1] b[2] b[3] b[4] b[5] b[6] b[7] b[8] b[9]

 Searching
We can use two different search algorithms for searching a specific data from an array

• Linear search algorithm
• Binary search algorithm

Linear search algorithm
In Linear search, each element of the array is compared with the given item to be searched for. This
method continues until the searched item is found or the last item is compared.

#include<iostream.h>
int linear_search(int a[], int size, int item)
{
int i=0;
 While(i<size&& a[i]!=item)
 i++;
if(i<size)
 return i;//returns the index number of the item in the array
else
 return -1;//given item is not present in the array so it returns -1 since -1 is not a legal index number
}
void main()
{
int b[8]={2,4,5,7,8,9,12,15},size=8;
int item;
cout<<”enter a number to be searched for”;
cin>>item;
int p=linear_search(b, size, item); //search item in the array b
if(p==-1)

cout<<item<<” is not present in the array”<<endl;
else

cout<<item <<” is present in the array at index no “<<p;
}

41

In linear search algorithm, if the searched item is the first elements of the array then the loop
terminates after the first comparison (best case), if the searched item is the last element of the array
then the loop terminates after size time comparison (worst case) and if the searched item is middle
element of the array then the loop terminates after size/2 time comparisons (average case). For large
size array linear search not an efficient algorithm but it can be used for unsorted array also.

Binary search algorithm
Binary search algorithm is applicable for already sorted array only. In this algorithm, to search for the
given item from the sorted array (in ascending order), the item is compared with the middle element of
the array. If the middle element is equal to the item then index of the middle element is returned,
otherwise, if item is less than the middle item then the item is present in first half segment of the array
(i.e. between 0 to middle-1), so the next iteration will continue for first half only, if the item is larger
than the middle element then the item is present in second half of the array (i.e. between middle+1 to
size-1), so the next iteration will continue for second half segment of the array only. The same
process continues until either the item is found (search successful) or the segment is reduced to the
single element and still the item is not found (search unsuccessful).

#include<iostream.h>
int binary_search(int a[], int size, int item)
{
int first=0,last=size-1,middle;
while(first<=last)

{
middle=(first+last)/2;
if(item==a[middle])

return middle; // item is found
else if(item< a[middle])

last=middle-1; //item is present in left side of the middle element
else

first=middle+1; // item is present in right side of the middle element
}

return -1; //given item is not present in the array, here, -1 indicates unsuccessful search
}
void main()
{
int b[8]={2,4,5,7,8,9,12,15},size=8;
int item;
cout<<”enter a number to be searched for”;
cin>>item;
int p=binary_search(b, size, item); //search item in the array b
if(p==-1)

cout<<item<<” is not present in the array”<<endl;
else

cout<<item <<” is present in the array at index no “<<p;
}
Let us see how this algorithm work for item=12
Initializing first =0 ; last=size-1; where size=8
Iteration 1

A[0] a[1] [2] a[3] a[4] a[5] a[6] a[7]
2 4 5 7 8 9 12 15

first
middl

e last

First=0, last=7
middle=(first+last)/2=(0+7)/2=3 // note integer division 3.5 becomes 3
value of a[middle] i.e. a[3] is 7

42

7<12 then first= middle+1 i.e. 3 + 1 =4
iteration 2

A[4] a[5] a[6] a[7]
8 9 12 15

first
middl

e last

first=4, last=7
middle=(first+last)/2=(4+7)/2=5
value of a[middle] i.e. a[5] is 9
9<12 then first=middle+1;5+1=6

iteration 3
a[6] a[7]
12 15

first
middl

e last

first=6,last=7
middle=(first+last)/2 = (6+7)/2=6
value of a[middle] i.e. a[6] is 12 which is equal to the value of item being search i.e.12
As a successful search the function binary_search() will return to the main function with value
6 as index of 12 in the given array. In main function p hold the return index number.

Note that each iteration of the algorithm divides the given array in to two equal segments and the only
one segment is compared for the search of the given item in the next iteration. For a given array of
size N= 2n elements, maximum n number of iterations are required to make sure whether the given
item is present in the given array or not, where as the linear requires maximum 2n number of iteration.
For example, the number of iteration required to search an item in the given array of 1000 elements,
binary search requires maximum 10 (as 1000≈210) iterations where as linear search requires
maximum 1000 iterations.

Inserting a new element in an array
We can insert a new element in an array in two ways

• If the array is unordered, the new element is inserted at the end of the array
• If the array is sorted then the new element is added at appropriate position without altering the

order. To achieve this, all elements greater than the new element are shifted. For example, to
add 10 in the given array below:

a[0] a[1] [2] a[3] a[4] a[5] a[6] a[7] a[8]
2 4 5 7 8 11 12 15

Original array

a[0] a[1] [2] a[3] a[4] a[5] a[6] a[7] a[8]
2 4 5 7 8 11 12 15

Elements greater than 10 shifted to create free place to insert 10

a[0] a[1] [2] a[3] a[4] a[5] a[6] a[7] a[8]
2 4 5 7 8 10 11 12 15

Array after insertion

Following program implement insertion operation for sorted array
43

#include<iostream.h>
void insert(int a[], int &n, int item) //n is the number of elements already present in the array
{
int i=n-1;
while (i>=0 && a[i]>item)

{
a[i+1]=a[i]; // shift the ith element one position towards right
 i--;
}

a[i+1]=item; //insertion of item at appropriate place
n++; //after insertion, number of elements present in the array is increased by 1
}
void main()
{int a[10]={2,4,5,7,8,11,12,15},n=8;
 int i=0;
 cout<<“Original array is:\n”;
 for(i=0;i<n;i++)

cout<<a[i]<<”, “;
insert(a,n,10);
cout<<”\nArray after inserting 10 is:\n”;
for(i=0; i<n; i++)

cout<<a[i]<<”, “;
}
Output is
Original array is:
2, 4, 5, 7, 8, 11, 12, 15
Array after inserting 10 is:
2, 4, 5, 7, 8, 10, 11, 12, 15

Deletion of an item from a sorted array
In this algorithm the item to be deleted from the sorted array is searched and if the item is found in the
array then the element is removed and the rest of the elements are shifted one position toward left in
the array to keep the ordered array undisturbed. Deletion operation reduces the number of elements
present in the array by1. For example, to remove 11 from the given array below:

a[0] a[1] [2] a[3] a[4] a[5] a[6] a[7]
2 4 5 7 8 11 12 15

Original array

a[0] a[1] [2] a[3] a[4] a[5] a[6] a[7]
2 4 5 7 8 12 15

Element removed

a[0] a[1] [2] a[3] a[4] a[5] a[6] a[7]
2 4 5 7 8 12 15

Array after shifting the rest element

Following program implement deletion operation for sorted array

#include<iostream.h>
void delete_item(int a[], int &n, int item) //n is the number of elements already present in the array
{int i=0;
while(i<n && a[i]<item)

i++;
if (a[i]==item) // given item is found

44

{while (i<n)
{a[i]=a[i+1]; // shift the (i+1)th element one position towards left
 i++;
}

cout<<”\n Given item is successfully deleted”;
}

 else
cout<<”\n Given item is not found in the array”;

n--;
}
void main()
{int a[10]={2,4,5,7,8,11,12,15},n=8;
 int i=0;
 cout<<“Original array is :\n”;
 for(i=0;i<n;i++)

cout<<a[i]<<”, “;
delete_item(a,n,11);
cout<<”\nArray after deleting 11 is:\n”;
for(i=0; i<n; i++)

cout<<a[i]<<”, “;
}
Output is
Original array is:
2, 4, 5, 7, 8, 11, 12, 15
Given item is successfully deleted
Array after deleting 11 is:
2, 4, 5, 7, 8, 12, 15

Traversal
Processing of all elements (i.e. from first element to the last element) present in one-dimensional
array is called traversal. For example, printing all elements of an array, finding sum of all elements
present in an array.
#include<iostream.h>
void print_array(int a[], int n) //n is the number of elements present in the array
{int i;
cout<<”\n Given array is :\n”;
for(i=0; i<n; i++)

cout<<a[i]<<”, “;
}
int sum(int a[], int n)
{int i,s=0;
for(i=0; i<n; i++)

s=s+a[i];
return s;
}
void main()
{int b[10]={3,5,6,2,8,4,1,12,25,13},n=10;
int i, s;
print_array(b,n);
s=sum(b,n);
cout<<”\n Sum of all elements of the given array is : ”<<s;
}
Output is
Given array is
3, 5, 6, 2, 8, 4, 1, 12, 25, 13
Sum of all elements of the given array is : 79

Sorting
45

The process of arranging the array elements in increasing (ascending) or decreasing (descending)
order is known as sorting. There are several sorting techniques are available e.g. selection sort,
insertion sort, bubble sort, quick sort, heap short etc. But in CBSE syllabus only selection sort,
insertion sort, bubble sort are specified.

Selection Sort
The basic idea of a selection sort is to repeatedly select the smallest element in the remaining
unsorted array and exchange the selected smallest element with the first element of the unsorted
array. For example, consider the following unsorted array to be sorted using selection sort
Original array

0 1 2 3 4 5 6
8 5 9 3 16 4 7

iteration 1 : Select the smallest element from unsorted array which is 3 and exchange 3 with the
first element of the unsorted array i.e. exchange 3 with 8. After iteration 1 the element
3 is at its final position in the array.

0 1 2 3 4 5 6
3 5 9 8 16 4 7

Iteration 2: The second pass identify 4 as the smallest element and then exchange 4 with 5

0 1 2 3 4 5 6
3 4 9 8 16 5 7

Iteration 3: The third pass identify 5 as the smallest element and then exchange 5 with 9
0 1 2 3 4 5 6
3 4 5 8 16 9 7

Iteration 4: The third pass identify 7 as the smallest element and then exchange 7 with 8
0 1 2 3 4 5 6
3 4 5 7 16 9 8

Iteration 5: The third pass identify 8 as the smallest element and then exchange 8 with 16
0 1 2 3 4 5 6
3 4 5 7 8 9 16

Iteration 6: The third pass identify 9 as the smallest element and then exchange 9 with 9 which
makes no effect.

0 1 2 3 4 5 6
3 4 5 7 8 9 16

The unsorted array with only one element i.e. 16 is already at its appropriate position so no more
iteration is required. Hence to sort n numbers, the number of iterations required is n-1, where in each
next iteration, the number of comparison required to find the smallest element is decreases by 1 as in
each pass one element is selected from the unsorted part of the array and moved at the end of sorted
part of the array . For n=7 the total number of comparison required is calculated as

Pass1: 6 comparisons i.e. (n-1)
Pass2: 5 comparisons i.e. (n-2)
Pass3: 4 comparisons i.e. (n-3)
Pass4: 3 comparisons i.e. (n-4)
Pass5: 2 comparisons i.e. (n-5)
Pass6: 1 comparison i.e. (n-6)=(n-(n-1))
Total comparison for n=(n-1)+(n-2)+(n-3)+ ……….+(n-(n-1))= n(n-1)/2
7=6+5+4+3+2+1=7*6/2=21;

Note: For given array of n elements, selection sort always executes n(n-1)/2 comparison statements
irrespective of whether the input array is already sorted(best case), partially sorted(average case) or
totally unsorted(i.e. in reverse order)(worst case).

Program:

#include<iostream.h>
void select_sort(int a[], int n) //n is the number of elements present in the array
{int i, j, p, small;

46

for(i=0;i<n-1;i++)
{small=a[i]; // initialize small with the first element of unsorted part of the array
p=i; // keep index of the smallest number of unsorted part of the array in p
for(j=i+1; j<n; j++) //loop for selecting the smallest element form unsorted array

{if(a[j]<small)
{small=a[j];
p=j;
}

}// end of inner loop----------
 //----------exchange the smallest element with ith element-------------
a[p]=a[i];
a[i]=small;
//-----------end of exchange-------------
}

}//end of function
void main()
{int a[7]={8,5,9,3,16,4,7},n=7,i;
cout<<”\n Original array is :\n”;
for(i=0;i<n;i++)

cout<<a[i]<<”, “;
select_sort(a,n);
cout<<”\nThe sorted array is:\n”;
for(i=0; i<n; i++)

cout<<a[i]<<”, “;
}
Output is
Original array is
8, 5, 9, 3, 16, 4, 7
The sorted array is
3, 4, 5, 7, 8, 9, 16

Insertion Sort
Insertion sort algorithm divides the array of n elements in to two subparts, the first subpart contain a[0]
to a[k] elements in sorted order and the second subpart contain a[k+1] to a[n] which are to be sorted.
The algorithm starts with only first element in the sorted subpart because array of one element is itself
in sorted order. In each pass, the first element of the unsorted subpart is removed and is inserted at
the appropriate position in the sorted array so that the sorted array remain in sorted order and hence
in each pass the size of the sorted subpart is increased by 1 and size of unsorted subpart is
decreased by 1. This process continues until all n-1 elements of the unsorted arrays are inserted at
their appropriate position in the sorted array.

For example, consider the following unsorted array to be sorted using selection sort
Original array

0 1 2 3 4 5 6
8 5 9 3 16 4 7

 Sorted unsorted

Initially the sorted subpart contains only one element i.e. 8 and the unsorted subpart contains n-1
elements where n is the number of elements in the given array.

Iteration1: To insert first element of the unsorted subpart i.e. 5 into the sorted subpart, 5 is
compared with all elements of the sorted subpart starting from rightmost element to the
leftmost element whose value is greater than 5, shift all elements of the sorted subpart
whose value is greater than 5 one position towards right to create an empty place at
the appropriate position in the sorted array, store 5 at the created empty place, here 8
will move from position a[0] to a[1] and a[0] is filled by 5. After first pass the status of
the array is:

0 1 2 3 4 5 6
5 8 9 3 16 4 7

47

 Sorted unsorted

Iteration2: In second pass 9 is the first element of the unsorted subpart, 9 is compared with 8,
since 8 is less than 9 so no shifting takes place and the comparing loop terminates. So
the element 9 is added at the rightmost end of the sorted subpart. After second pass
the status of the array is:

0 1 2 3 4 5 6
5 8 9 3 16 4 7

Sorted unsorted

Iteration3: in third pass 3 is compared with 9, 8 and 5 and shift them one position towards right
and insert 3 at position a[0]. After third pass the status of the array is:

0 1 2 3 4 5 6
3 5 8 9 16 4 7

Sorted unsorted

Iteration4: in forth pass 16 is greater than the largest number of the sorted subpart so it remains
at the same position in the array. After fourth pass the status of the array is:

Sorted unsorted

Iteration5: in fifth pass 4 is inserted after 3. After third pass the status of the array is:
0 1 2 3 4 5 6
3 4 5 8 9 16 7

Sorted unsorted

Iteration6: in sixth pass 7 is inserted after 5. After fifth pass the status of the array is:
0 1 2 3 4 5 6
3 4 5 7 8 9 16

 Sorted

Insertion sort take advantage of sorted(best case) or partially sorted(average case) array because if
all elements are at their right place then in each pass only one comparison is required to make sure
that the element is at its right position. So for n=7 only 6 (i.e. n-1) iterations are required and in each
iteration only one comparison is required i.e. total number of comparisons required= (n-1)=6 which is
better than the selection sort (for sorted array selection sort required n(n-1)/2 comparisons). Therefore
insertion sort is best suited for sorted or partially sorted arrays.

Program:
#include<iostream.h>
void insert_sort(int a[],int n) //n is the no of elements present in the array
{int i, j,p;
for (i=1; i<n; i++)

{p=a[i];
j=i-1;
//inner loop to shift all elements of sorted subpart one position towards right
while(j>=0&&a[j]>p)

{
a[j+1]=a[j];
j--;
}

//---------end of inner loop
a[j+1]=p; //insert p in the sorted subpart
}

}
void main()

0 1 2 3 4 5 6
3 5 8 9 16 4 7

48

{
int a[7]={8,5,9,3,16,4,7},n=7,i;
cout<<”\n Original array is :\n”;
for(i=0;i<n;i++)

cout<<a[i]<<”, “;
insert_sort(a,n);
cout<<”\nThe sorted array is:\n”;
for(i=0; i<n; i++)

cout<<a[i]<<”, “;
}
Output is
Original array is
8, 5, 9, 3, 16, 4, 7
The sorted array is
3, 4, 5, 7, 8, 9, 16

Bubble Sort
Bubble sort compares a[i] with a[i+1] for all i=0..n-2, if a[i] and a[i+1] are not in ascending order then
exchange a[i] with a[i+1] immediately. After each iteration all elements which are not at their proper
position move at least one position towards their right place in the array. The process continues until
all elements get their proper place in the array (i.e. algorithm terminates if no exchange occurs in the
last iteration)
For example, consider the following unsorted array to be sorted using selection sort
Original array

0 1 2 3 4 5 6
8 5 9 3 16 4 7

Iteration1: The element a[0] i.e. 8 is compared with a[1] i.e. 5, since 8>5 therefore exchange 8 with
5.

0 1 2 3 4 5 6
5 8 9 3 16 4 7

 The element a[1] i.e. 8 and a[2] i.e. 9 are already in ascending order so no exchange
required

0 1 2 3 4 5 6
5 8 9 3 16 4 7

 The element a[2] i.e. 9 and a[3] i.e. 3 are not in ascending order so exchange a[2] with a[3]

0 1 2 3 4 5 6
5 8 3 9 16 4 7

 The element a[3] i.e. 9 and a[4] i.e. 16 are in ascending order so no exchange required

0 1 2 3 4 5 6
5 8 3 9 16 4 7

 The element a[4] i.e. 16 and a[5] i.e. 4 are not in ascending order so exchange a[4] with
a[5]

0 1 2 3 4 5 6
5 8 9 3 4 16 7

 The element a[5] i.e. 16 and a[6] i.e. 7 are not in ascending order so exchange a[5] with
a[6]

0 1 2 3 4 5 6
5 8 9 3 4 7 16

49

Since in iteration1 some elements were exchanged with each other which shows that
array was not sorted yet, next iteration continues. The algorithm will terminate only if
the last iteration do not process any exchange operation which assure that all elements
of the array are in proper order.

Iteration2: only exchange operations are shown in each pass
0 1 2 3 4 5 6
5 8 9 3 4 7 16

0 1 2 3 4 5 6
5 8 3 9 4 7 16

0 1 2 3 4 5 6
5 8 3 4 9 7 16

0 1 2 3 4 5 6
5 8 3 4 7 9 16

In iteration 2 some exchange operations were processed, so, at least one more
iteration is required to assure that array is in sorted order.

Iteration3:
0 1 2 3 4 5 6
5 8 3 4 7 9 16

0 1 2 3 4 5 6
5 3 8 4 7 9 16

0 1 2 3 4 5 6
5 3 4 8 7 9 16

0 1 2 3 4 5 6
5 3 4 7 8 9 16

Iteration4:
0 1 2 3 4 5 6
5 3 4 7 8 9 16

0 1 2 3 4 5 6
3 5 4 7 8 9 16

0 1 2 3 4 5 6
3 4 5 7 8 9 16

Iteration5:
0 1 2 3 4 5 6
3 4 5 7 8 9 16

In iteration 5 no exchange operation executed because all elements are already in
proper order therefore the algorithm will terminate after 5th iteration.

Merging of two sorted arrays into third array in sorted order

Algorithm to merge arrays a[m](sorted in ascending order) and b[n](sorted in descending order) into
third array C[n+m] in ascending order.

#include<iostream.h>
Merge(int a[], int m, int b[n], int c[])// m is size of array a and n is the size of array b
{int i=0; // i points to the smallest element of the array a which is at index 0
 int j=n-1;// j points to the smallest element of the array b which is at the index m-1 since b is

50

 // sortet in descending order
int k=0; //k points to the first element of the array c
while(i<m&&j>=0)
 {if(a[i]<b[j])

 c[k++]=a[i++]; // copy from array a into array c and then increment i and k
 else

 c[k++]=b[j--]; // copy from array b into array c and then decrement j and increment k

 }
while(i<m) //copy all remaining elements of array a
 c[k++]=a[i++];
while(j>=0) //copy all remaining elements of array b
 c[k++]=b[j--];
}
void main()
{int a[5]={2,4,5,6,7},m=5; //a is in ascending order
int b[6]={15,12,4,3,2,1},n=6; //b is in descending order
int c[11];
merge(a, m, b, n, c);
cout<<”The merged array is :\n”;
for(int i=0; i<m+n; i++)

cout<<c[i]<”, “;
}
Output is
The merged array is:
1, 2, 2, 3, 4, 4, 5, 6, 7, 12, 15

Two dimensional arrays

In computing, row-major order and column-major order describe methods for storing
multidimensional arrays in linear memory. Following standard matrix notation, rows are identified by
the first index of a two-dimensional array and columns by the second index. Array layout is critical for
correctly passing arrays between programs written in different languages. Row-major order is used in
C, C++; column-major order is used in Fortran and MATLAB.
Row-major order

In row-major storage, a multidimensional array in linear memory is accessed such that rows are
stored one after the other. When using row-major order, the difference between addresses of array
cells in increasing rows is larger than addresses of cells in increasing columns. For example, consider
this 2×3 array:

An array declared in C as
int A[2][3] = { {1, 2, 3}, {4, 5, 6} };
would be laid out contiguously in linear memory as:

 1 2 3 4 5 6

To traverse this array in the order in which it is laid out in memory, one would use the following nested
loop:

for (i = 0; i < 2; i++)
 for (j = 0; j < 3; j++)
 cout<<A[i][j];

51

http://en.wikipedia.org/wiki/Contiguous#Computer_science
http://en.wikipedia.org/wiki/Matrix_(mathematics)

The difference in offset from one column to the next is 1*sizeof(type) and from one row to the next is
3*sizeof(type). The linear offset from the beginning of the array to any given element A[row][column]
can then be computed as:

offset = row*NUMCOLS + column

Address of element A[row][column] can be computed as:

Address of A[row][column]=base address of A + (row*NUMCOLS + column)* sizeof (type)

Where NUMCOLS is the number of columns in the array.

The above formula only works when using the C, C++ convention of labeling the first element 0. In
other words, row 1, column 2 in matrix A, would be represented as A[0][1]
Note that this technique generalizes, so a 2×2×2 array looks like:

int A[2][2][2] = {{{1,2}, {3,4}}, {{5,6}, {7,8}}};

and the array would be laid out in linear memory as:

 1 2 3 4 5 6 7 8

Example 1.
For a given array A[10][20] is stored in the memory along the row with each of its elements occupying
4 bytes. Calculate address of A[3][5] if the base address of array A is 5000.

Solution:

For given array A[M][N] where M=Number of rows, N =Number of Columns present in the array
address of A[I][J]= base address+(I * N + J)*sizeof(type)
here M=10, N=20, I=3, J=5, sizeof(type)=4 bytes

address of A[3][5] = 5000 + (3 * 20 + 5) * 4
= 5000 + 65*4=5000+260=5260

Example 2.
An array A[50][20] is stored in the memory along the row with each of its elements occupying 8 bytes.
Find out the location of A[5][10], if A[4][5] is stored at 4000.

Solution:

Calculate base address of A i.e. address of A[0][0]
For given array A[M][N] where M=Number of rows, N =Number of Columns present in the array
address of A[I][J]= base address+(I * N + J)*sizeof(type)
here M=50, N=20, sizeof(type)=8, I=4, J=5
address of A[4][5] = base address + (4*20 +5)*8

4000 = base address + 85*8
Base address= 4000-85*8= 4000-680=3320

Now to find address of A[5][10]
here M=50, N=20, sizeof(type)=8, I=5, J=10
Address of A[5][10] = base address +(5*20 + 10)*8

 =3320 + 110*8 = 3320+880 = 4200

Column-major order is a similar method of flattening arrays onto linear memory, but the columns are
listed in sequence. The programming languages Fortran, MATLAB, use column-major ordering. The
array

52

http://en.wikipedia.org/wiki/MATLAB
http://en.wikipedia.org/wiki/Fortran

if stored contiguously in linear memory with column-major order would look like the following:
 1 4 2 5 3 6

The memory offset could then be computed as:
offset = row + column*NUMROWS

Address of element A[row][column] can be computed as:

Address of A[row][column]=base address of A + (column*NUMROWS +rows)* sizeof (type)

Where NUMROWS represents the number of rows in the array in this case, 2.

Treating a row-major array as a column-major array is the same as transposing it. Because
performing a transpose requires data movement, and is quite difficult to do in-place for non-square
matrices, such transpositions are rarely performed explicitly. For example, software libraries for linear
algebra, such as the BLAS, typically provide options to specify that certain matrices are to be
interpreted in transposed order to avoid the necessity of data movement

Example1.
For a given array A[10][20] is stored in the memory along the column with each of its elements
occupying 4 bytes. Calculate address of A[3][5] if the base address of array A is 5000.
Solution:
For given array A[M][N] where M=Number of rows, N =Number of Columns present in the array
Address of A[I][J]= base address + (J * M + I)*sizeof(type)
here M=10, N=20, I=3, J=5, sizeof(type)=4 bytes

Address of A[3][5] = 5000 + (5 * 10 + 3) * 4
= 5000 + 53*4 = 5000+215 =5215

Example2.
An array A[50][20] is stored in the memory along the column with each of its elements occupying 8
bytes. Find out the location of A[5][10], if A[4][5] is stored at 4000.
Solution:
Calculate base address of A i.e. address of A[0][0]
For given array A[M][N] where M=Number of rows, N =Number of Columns present in the array
address of A[I][J]= base address+(J * M + I)*sizeof(type)
here M=50, N=20, sizeof(type)=8, I=4, J=5
address of A[4][5] = base address + (5 * 50 +4)*8

4000 = base address + 254*8
Base address= 4000-55*8= 4000-2032=1968

Now to find address of A[5][10]
here M=50, N=20, sizeof(type)=8, I =5, J=10
Address of A[5][10] = base address +(10*50 + 10)*8

 =1968 + 510*8 = 1968+4080 = 6048

4 Marks Questions

1. Write a function in C++ which accepts an integer array and its size as arguments and replaces
elements having even values with its half and elements having odd values with twice its value
2. Write a function in C++ which accepts an integer array and its size as argument and exchanges the
value of first half side elements with the second half side elements of the array.
Example: If an array of eight elements has initial content as 2,4,1,6,7,9,23,10. The function should
rearrange the array as 7,9,23,10,2,4,1,6.

53

http://en.wikipedia.org/wiki/BLAS
http://en.wikipedia.org/wiki/Linear_algebra
http://en.wikipedia.org/wiki/Linear_algebra
http://en.wikipedia.org/wiki/Software_libraries
http://en.wikipedia.org/wiki/In-place_matrix_transposition
http://en.wikipedia.org/wiki/In-place_matrix_transposition
http://en.wikipedia.org/wiki/Contiguous#Computer_science

3. Write a function in c++ to find and display the sum of each row and each column of 2 dimensional
array. Use the array and its size as parameters with int as the data type of the array.
4. Write a function in C++, which accepts an integer array and its size as parameters and rearrange
the array in reverse. Example if an array of five members initially contains the elements as
6,7,8,13,9,19
Then the function should rearrange the array as 19,9,13,8,7,6
5. Write a function in C++, which accept an integer array and its size as arguments and swap the
elements of every even location with its following odd location. Example : if an array of nine elements
initially contains the elements as 2,4,1,6,5,7,9,23,10 Then the function should rearrange the array as
4,2,6,1,7,5,23,9,10
6. Write a function in C++ which accepts an integer array and its size as arguments and replaces
elements having odd values with thrice and elements having even values with twice its value.
Example: If an array of five elements initially contains the elements 3,4,5,16,9
Then the function should rearrange the content of the array as 9,8,15,32,27
7. Write function SORTPOINTS() in c++ to sort an array of structure Game in descending order of
points using Bubble Sort Note: Assume the following definition of structure Game

struct Game
{long PNo; // Player Number
char PName[20];
long points;
};

8. Write a c++ function to shift all the negative numbers to left and positive number in the right side.
9. Define a function SWPCOL() in C++ to swap (interchange) the first column elements with the last
column elements, for a two dimensional array passed as the argument of the function.

Example : if the two dimensional array contains
2 1 4 9
1 3 7 7
5 8 6 3
7 2 1 2
After swapping of the content of 1st and last column, it should be
9 1 4 2
7 3 7 1
3 8 6 5
2 2 1 7

13. Write a function which accept 2D array of integers and its size as arguments and displays the sum
of elements which lie on diagonals.

[Assuming the 2D array to be a square matrix with odd dimension ie 3 x 3 , 4 x 4 etc]
Example of the array content is
5 4 3
6 7 8
1 2 9
Output through the function should be
Diagonal One Sum : 21
Diagonal Two: 11

15. Write a user defined function named upperhalf() which takes a 2D array A, with size n rows and n
cols as arguments and print the upper half of the matrix
16. Write a user defined function lowerhalf() which takes a 2D array, with size n rows and n cols as
argument and prints the lower half of the matrix
17. Write the function to find the largest and second largest number from a two dimensional array.
The function should accept the array and its size as argument.
18. Write a function in C++ to merge the contents of two sorted arrays A & B into third array C.
Assuming array A is sorted in ascending order, B is sorted in descending order, the resultant array is
required to be in ascending order.
19. An array arr[40][30] stored in the memory along the column with each of the element occupying 4
bytes. Find out the base address and address of the element arr[20][15], if an element arr[15][10] is
stored at the memory location 7200.
20. An array s[50][10] stored in the memory along the row with each element occupying 2 bytes. Find
out the address of the location s[20][50] if the location s[10][25] stored at the address 10000.

54

Stack, Queues using Arrays and Linked List

Stack
In computer science, a stack is a last in, first out (LIFO) data structure. A stack can is characterized
by only two fundamental operations: push and pop. The push operation adds an item to the top of the
stack. The pop operation removes an item from the top of the stack, and returns this value to the
caller.
A stack is a restricted data structure, because only a small number of operations are performed on it.
The nature of the pop and push operations also mean that stack elements have a natural order.
Elements are removed from the stack in the reverse order to the order of their addition: therefore, the
lower elements are those that have been on the stack the longest. One of the common uses of stack
is in function call.

Stack using array
#include<iostream.h>
const int size=5
class stack
{int a[size]; //array a can store maximum 5 item of type int of the stack
int top; //top will point to the last item pushed onto the stack
public:
stack(){top=-1;} //constructor to create an empty stack, top=-1 indicate that no item is //present

in the array
void push(int item)
{If(top==size-1)
 cout<<”stack is full, given item cannot be added”;
else
 a[++top]=item; //increment top by 1 then item at new position of the top in the array a
}
int pop()
{If (top==-1)
 {out<<”Stack is empty “;
 return -1; //-1 indicates empty stack
 }
else
 return a[top--];//return the item present at the top of the stack then decrement top by 1
}
void main()
{ stack s1;
 s1.push(3);
 s1.push(5);
cout<<s1.pop()<<endl;
cout<<s1.pop()<<endl;
cout<<s1.pop();
}
Output is
5
3
 Stack is empty -1

4
3
2

top 1 5
0 3

55

In the above program the statement stack s1 creates s1 as an empty stack and the constructor
initialize top by -1.
Initially stack is empty stack after s1.push(3) stack after s1.push(5)

4
 3

2
1
0

top -1

After first s1.pop() statement, the item 5 is removed from the stack and top moves from 1 to 0

After second s1.pop() statement, the item 3 is removed from stack and top moves from 0 to -1 which
indicates that now stack is empty.

4
 3

2
1
0

top -1
After third s1.pop() statement the pop function display error message “stack is empty” and returns -1
to indicating that stack is empty and do not change the position of top of the stack.

Stack using Linked list
In Computer Science, a linked list (or more clearly, "singly-linked list") is a data structure that
consists of a sequence of nodes each of which contains data and a pointer which points (i.e., a link) to
the next node in the sequence.

A linked list whose nodes contain two fields: an integer value and a link to the next node

The main benefit of a linked list over a conventional array is that the list elements can easily be added
or removed without reallocation or reorganization of the entire structure because the data items need
not be stored contiguously in memory or on disk .Stack using linked lists allow insertion and removal
of nodes only at the position where the pointer top is pointing to.

Stack implementation using linked list

#include<iostream.h>
struct node

4
3
2
1

top 0 3

4
3
2
1

top 0 3

56

http://en.wikipedia.org/wiki/File:Singly-linked-list.svg

{
Int item; //data that will be stored in each node
node * next; //pointer which contains address of another node
}; //node is a self referential structure which contains reference of another object type node

class stack
{node *top;
public:
stack() //constructor to create an empty stack by initializing top with NULL
{ top=NULL; }
void push(int item);
int pop();
~stack();
};
void stack::push(int item) //to insert a new node at the top of the stack
{node *t=new node; //dynamic memory allocation for a new object of node type
if(t==NULL)

cout<<”Memory not available, stack is full”;
else

{t->item=item;
t->next=top; //newly created node will point to the last inserted node or NULL if

//stack is empty
top=t; //top will point to the newly created node
}

}

int stack::pop()//to delete the last inserted node(which is currently pointed by the top)
{if(top==NULL)

{cout<<”Stack is empty \n”;
return 0; // 0 indicating that stack is empty
}

else
{node *t=top; //save the address of top in t
int r=top->item; //store item of the node currently pointed by top
top=top->next; // move top from last node to the second last node
delete t; //remove last node of the stack from memory
return r;
}

}
stack::~stack()//de-allocated all undeleted nodes of the stack when stack goes out of scope
{node *t;
while(top!=NULL)

{t=top;
top=top->next;
delete t;
}

};

void main()
{ stack s1;
 s1.push(3);
 s1.push(5);
 s1.push(7);
 cout<<s1.pop()<<endl;
cout<<s1.pop()<<endl;
cout<<s1.pop()<<endl;
cout<<s1.pop()<<endl;
}
Output is

57

7
5
3
Stack is empty 0
 In the above program the statement stack s1; invokes the constructor stack() which create an empty
stack object s1 and initialize top with NULL.
 top NULL
After statement s1.push(3) the stack become

top
NULL

After statement s1.push(5) the stack become

top

NULL

After statement s1.push(7) the stack become

top

NULL

After the first s1.pop() statement the node currently pointed by top (i.e. node containing 7) is deleted
from the stack, after deletion the status of stack is

top

NULL

After the second s1.pop() statement the node currently pointed by top (i.e. node containing 5) is
deleted from the stack, after deletion the status of stack is

top
NULL

After the third s1.pop() statement the node currently pointed by top (i.e. node containing 3) is deleted
from the stack, after deletion the stack become empty i.e.

Top NULL
After the fourth s1.pop() statement, the error message “stack is empty“ displayed and the pop()
function return 0 to indicate that stack is empty.

Application of stacks in infix expression to postfix expression conversion

Infix expression operand1 operator operand2 for example a+b
Postfix expression operand1 operand2 operator for example ab+
Prefix expression operator operand1 operand2 for example +ab

Some example of infix expression and their corresponding postfix expression
Infix expression postfix expression
a*(b-c)/e abc-*e/

3

35

57 3

35

3

58

(a+b)*(c-d)/e ab+cd-*e/
(a+b*c)/(d-e)+f abc*+de-/f+

Algorithm to convert infix expression to postfix expression using stack
Let the infix expression INEXP is to be converted in to equivalent postfix expression POSTEXP. The
postfix expression POSTEXP will be constructed from left to right using the operands and operators
(except “(“, and “)”) from INEXP. The algorithm begins by pushing a left parenthesis onto the empty
stack, adding a right parenthesis at the end of INEXP, and initializing POSTEXP with null. The
algorithm terminates when stack become empty.
The algorithm contains following steps

1. Initialize POSTEXP with null
2. Add ‘)’ at the end of INEXP
3. Create an empty stack and push ‘(‘ on to the stack
4. Initialize i=0,j=0
5. Do while stack is not empty
6. If INEXP[i] is an operand then

 POSTEXP[j]=INEXP[i]
 I=i+1
 j=j+1
 Goto step 5

7. If INEXP[i] is ‘(‘ then
 push (INEXP[i])

i=i+1
Goto step 5

8. If INEXP[i] is an operator then
While precedence of the operator at the top of the stack > precedence of operator

POSTEXP[j]=pop()
J=j+1

End of while
Push (INEXP[i])
I=i+1
Goto step 5

9. If INEXP[i] is ‘)’ then
While the operator at the top of the stack is not ‘(‘

POSTEXP[j]=pop()
J=j+1

End while
Pop()

10. End of step 5
11. End algorithm

For example convert the infix expression (A+B)*(C-D)/E into postfix expression showing stack status
after every step.
Symbol scanned from infix Stack status (bold letter

shows the top of the stack)
Postfix expression

(
(((
A ((A
+ ((+ A
B ((+ AB
) (AB+
* (* AB+
((*(AB+
C (*(AB+C
- (*(- AB+C
D (*(- AB+CD
) (* AB+CD-

59

/ (/ AB+CD-*
E (/ AB+CD-*E
) AB+CD-*E/
Answer: Postfix expression of (A+B)*(C-D)/E is AB+CD-*E/

Evaluation of Postfix expression using Stack
Algorithm to evaluate a postfix expression P.

1. Create an empty stack
2. i=0
3. while P[i] != NULL

if P[i] is operand then
Push(P[i])
I=i+1

Else if P[i] is a operator then
Operand2=pop()
Operand1=pop()
Push (Operand1 operator Operator2)

End if
4. End of while
5. return pop() // return the calculated value which available in the stack.
 End of algorithm

Example: Evaluate the following postfix expression showing stack status after every step
8, 2, +, 5, 3, -, *, 4 /

token scanned
from postfix
expression

Stack status (bold letter
shows the top of the
stack) after processing
the scanned token

Operation performed

8 8 Push 8
2 8, 2 Push 2
+ 10 Op2=pop() i.e 2

Op1=pop() i.e 8
Push(op1+op2) i.e. 8+2

5 10, 5 Push(5)
3 10, 5, 3 Push(3)
- 10, 2 Op2=pop() i.e. 3

Op1=pop() i.e. 5
Push(op1-op2) i.e. 5-3

* 20 Op2=pop() i.e. 2
Op1=pop() i.e. 10
Push(op1-op2) i.e. 10*2

4 20, 4 Push 4
/ 5 Op2=pop() i.e. 4

Op1=pop() i.e. 20
Push(op1/op2) i.e. 20/4

NULL Final result 5 Pop 5 and return 5

Example:
Evaluate the following Boolean postfix expression showing stack status after every step

True, False, True, AND, OR, False, NOT, AND

token scanned
from postfix
expression

Stack status (bold letter
shows the top of the
stack) after processing
the scanned token

Operation performed

True True Push True
60

False True, False Push False
True True, False, True Push True
AND True, False Op2=pop() i.e. True

Op1=pop() i.e. False
Push(Op2 AND Op1) i.e. False AND
True=False

OR True Op2=pop() i.e. False
Op1=pop() i.e. True
Push(Op2 OR Op1) i.e. True OR False=True

False True, False Push False
NOT True, True Op1=pop() i.e. False

Push(NOT False) i.e. NOT False=True
AND True Op2=pop() i.e. True

Op1=pop() i.e. True
Push(Op2 AND Op1) i.e. True AND True=True

NULL Final result True Pop True and Return True

Queue
Queue is a linear data structure which follows First In First Out (FIFO) rule in which a new item is
added at the rear end and deletion of item is from the front end of the queue. In a FIFO data structure,
the first element added to the queue will be the first one to be removed.

Linear Queue implementation using Array

#include<iostream.h>
const int size=5;
class queue
{int front , rear;
int a[size];
public:
queue(){frot=0;rear=0;} //Constructor to create an empty queue
void addQ()
{ if(rear==size)

cout<<”queue is full<<endl;
 else

a[rear++]=item;
}
int delQ()
{if(front==rear)

{cout<<”queue is empty”<<endl; return 0;}

else
return a[front++];

}
}
void main()
{queue q1;
q1.addQ(3);
q1.addQ(5) ;
q1.addQ(7) ;
cout<<q1.delQ()<<endl ;
cout<<q1.delQ()<<endl ;
cout<<q1.delQ()<<endl;
cout<<q1.delQ()<<endl;
}
Output is
3

61

5
7
Queue is empty
0
In the above program the statement queue q1 creates an empty queue q1.

Front

a[0] a[1] a[2] a[3] a[4]

Rear

After execution of the statement q1.addQ(3), status of queue is
Front

a[0] a[1] a[2] a[3] a[4]
 3

Rear
After execution of the statement q1.addQ(5), status of queue is

Front

a[0] a[1] a[2] a[3] a[4]
 3 5

 Rear
After execution of the statement q1.addQ(7), status of queue is

Front

a[0] a[1] a[2] a[3] a[4]
 3 5 7

 Rear
After execution of the first cout<<q1.delQ() statement, 3 is deleted from queue status of queue is

Front

a[0] a[1] a[2] a[3] a[4]
 3 5 7

 Rear

After execution of the second cout<<q1.delQ() statement, 5 is deleted from the queue status of queue
is

Front

a[0] a[1] a[2] a[3] a[4]
3 5 7

 Rear
After execution of the third cout<<q1.delQ() statement, 7 is deleted from the queue. The status of
queue is empty

Front

a[0] a[1] a[2] a[3] A[4]
3 5 7

62

 Rear
After execution of the fourth cout<<q1.delQ() statement, the message “queue is empty“ displayed
and status of queue is Front

a[0] a[1] a[2] a[3] a[4]
3 5 7

 Rear
Note that since rear and front moves only in one direction therefore once the rear cross the last
element of the array(i.e. rear==size) then even after deleting some element of queue the free spaces
available in queue cannot be allocated again and the function delQ() display error message “queue is
full”.

Queue using linked list
#include<iostream.h>
struct node
{
int item;
node *next;
};
class queue
{
node *front, *rear;
public:
queue() {front=NULL; rear=NULL;}//constructor to create empty queue
void addQ(int item);
int delQ();
};
void queue::addQ(int item)
{node * t=new node;
if(t==NULL)

cout<<”memory not available, queue is full”<<endl;
else

{t->item=item;
 t->next=NULL;
if (rear==NULL) //if the queue is empty

{rear=t; front=t; //rear and front both will point to the first node
}

else
{
rear->next=t;
 rear=t;
}

}
}
int queue::delQ()
{
if(front==NULL)

cout<<”queue is empty”<<return 0;
else

{node *t=front;
 int r=t->item;
 front=front->next; //move front to the next node of the queue
 if(front==NULL)

rear==NULL;
 delete t;
 return r;
}

}

63

void main()
{
queue q1;
q1.addQ(3);
q1.addQ(5) ;
q1.addQ(7) ;
cout<<q1.delQ()<<endl ;
cout<<q1.delQ()<<endl ;
cout<<q1.delQ()<<endl;
cout<<q1.delQ()<<endl;
}
Output is
3
5
7
Queue is empty
0
In the above program the statement queue q1; invokes the constructor queue() which create an
empty queue object q1 and initialize front and rear with NULL.

front
NULL

rear

After statement q1.addQ(3) the stack become

front

NULL

rear
After statement q1.addQ(5) the stack become

front

NULL

 rear
After statement q1.addQ(7) the stack become

front

NULL

rear
After the first q1.delQ() statement the node currently pointed by front (i.e. node containing 3) is
deleted from the queue, after deletion the status of queue is

 front

NULL

rear
After the second q1.delQ() statement the node currently pointed by front (i.e. node containing 5) is
deleted from the queue, after deletion the status of queue is

front

3

53

53 7

75

7 64

NULL

rear
After the third q1.delQ() statement the node currently pointed by front (i.e. node containing 7) is
deleted from the queue, after deletion the queue become empty therefore NULL is a assigned to both
rear and front

front
NULL

rear
After the fourth q1.delQ() statement, the error message “queue is empty“ displayed and the pop()
function return 0 to indicate that queue is empty.

Circular queue using array

Circular queues overcome the problem of unutilised space in linear queues implemented as array. In
circular queue using array the rear and front moves in a circle from 0,1,2…size-1,0, and so on.

#include<iostream.h>
const int size=4;
class Cqueue
{
int a[size];
int front,rear,anyitem;
public:
void Cqueue(){front=0;rear=0;anyitem=0;}
void addCQ(int item);
int delCQ();
};
void Cqueue::addCQ(int item)
{
If(front==rear && anyitem>0)

cout<<”Cqueue is full”<<endl;
else

{a[rear]=item;
rear=(rear+1)%size; //rear will move in circular order
anyitem++; //value of the anyitem contains no of items present in the queue
}

}
int Cqueue::delCQ()
{
if(front==rear&& anyitem==0)

cout<<”Cqueue is empty”<<endl; return 0; //0 indicate that Cqueue is empty
else

{int r=a[front];
front=(front+1)/size;
anyitem--;
}

}

void main()
{Cqueue q1;
q1.addCQ(3);
q1.addCQ(5) ;
cout<<q1.delCQ()<<endl ;
q1.addCQ(7) ;
cout<<q1.delCQ()<<endl ;
q1.addCQ(8) ;
q1.addCQ(9) ;

65

cout<<q1.delCQ()<<endl;
cout<<q1.delCQ()<<endl;
}
Output is
3
5
7
8

Stack, Queues using Arrays and Linked List : Practice Questions

2 Marks Questions
1. Convert the following infix expressions to postfix expressions using stack

1. A + (B * C) ^ D – (E / F – G)
2. A * B / C * D ^ E * G / H
3. ((A*B)-((C_D)*E/F)*G
4. A+B/C*D+F*G
5. A+B-A/(B*(A-B-A*D)^B)
6. (B+(C+D)*(E+F)/G)/H
7. (TRUE || FALSE) && ! (FALSE || TRUE)
8. (A / B + C) / D + E / (F + G * H / I)
9. (((b-(c*d-e)+f))/g)+(h*j+x)
10. A+(((B*C)*(D+E)+F*G)^(H-J)
11. (A-B) *(C/(D-E)+F-G

2. Evaluate the following postfix expression E given below; show the contents of the stack during the
evaluation
1. E= 5,9,+2,/,4,1,1,3,_,*,+
2. E= 80,35,20,-,25,5,+,-,*
3. E= 30,5,2,^,12,6,/,+,-
4. E=15, 3, 2, +, /, 7, + 2, *
5. E=25, 8, 3, - , / 6, *, 10 +
6. E=8, 7, -, 9, 8, *, -, 2, / , 3,4, * 2, / -
7. E= 5,20,15,-,*,25,2,*,-
8. E= 10,+,15,*,25,5,/,2+
9. E= 7,6,2,/,+,18,-
10. E= 7,6, +, 8, * , 2, -, 3, * , 2, 4, * , -
11. E=TRUE, FALSE, NOT, TRUE, OR, FALSE, AND, OR
12. E=FALSE, TRUE, TRUE, NOT, AND, OR, AND

3 or 4 Marks Questions
1. An array A[40][10] is stored in the memory along the column with each element occupying 4 bytes. Find
out the address of the location A[3][6] if the location A[30][10] is stored at the address 9000.
2. An array A[30][20] is stored in the memory along the row with each element occupying 2 bytes. Find out
the address of the location A[10][5] if the location A[20][10] is stored at the address 10000.
3. Define functions in C++ to perform a PUSH and POP operation in a dynamically allocated stack considering
the following :

struct Node
{ int X,Y;
Node *Link; };
class STACK
{ Node * Top;
public:
STACK()
 {
TOP=NULL;
}
void PUSH();
void POP();

66

~STACK();
};

4. Write a function in C++ to perform a Add and Delete operation in a dynamically allocated Queue considering
the following:

struct node
{
int empno ;char name[20] ;float sal ;
 Node *Link;
};

67

DATABASE AND SQL

Basic Database concepts
Data :- Raw facts and figures which are useful to an organization. We cannot take decisions
on

the basis of data.
Information:- Well processed data is called information. We can take decisions on the basis of

information
Field: Set of characters that represents specific data element.
Record: Collection of fields is called a record. A record can have fields of different data types.
File: Collection of similar types of records is called a file.
Table: Collection of rows and columns that contains useful data/information is called a table.

A table generally refers to the passive entity which is kept in secondary storage device.
Relation: Relation (collection of rows and columns) generally refers to an active entity on which

we can perform various operations.
Database: Collection of logically related data along with its description is termed as database.
Tuple: A row in a relation is called a tuple.
Attribute: A column in a relation is called an attribute. It is also termed as field or data item.
Degree: Number of attributes in a relation is called degree of a relation.
Cardinality: Number of tuples in a relation is called cardinality of a relation.
Primary Key: Primary key is a key that can uniquely identifies the records/tuples in a relation. This

key can never be duplicated and NULL.
Foreign Key: Foreign Key is a key that is defined as a primary key in some other relation. This key is

used to enforce referential integrity in RDBMS.
Candidate Key: Set of all attributes which can serve as a primary key in a relation.
Alternate Key: All the candidate keys other than the primary keys of a relation are alternate keys for

a relation.
DBA: Data Base Administrator is a person (manager) that is responsible for defining the data

base schema, setting security features in database, ensuring proper functioning
of the data bases etc.

Structured Query Language
SQL is a non procedural language that is used to create, manipulate and process the
databases(relations).

Characteristics of SQL
1. It is very easy to learn and use.
2. Large volume of databases can be handled quite easily.
3. It is non procedural language. It means that we do not need to specify the procedures to

accomplish a task but just to give a command to perform the activity.
4. SQL can be linked to most of other high level languages that makes it first choice for the

database programmers.

Processing Capabilities of SQL
The following are the processing capabilities of SQL

1. Data Definition Language (DDL)
DDL contains commands that are used to create the tables, databases, indexes, views,
sequences and synonyms etc.
e.g: Create table, create view, create index, alter table etc.
2. Data Manipulation Language (DML)
DML contains command that can be used to manipulate the data base objects and to query the

databases for information retrieval.
e.g Select, Insert, Delete, Update etc.
3. View Definition:
DDL contains set of command to create a view of a relation.
e.g : create view
4. Data Control Language:

This language is used for controlling the access to the data. Various commands like GRANT,
REVOKE etc are available in DCL.

68

 5. Transaction Control Language (TCL)
TCL include commands to control the transactions in a data base system. The commonly used
commands in TCL are COMMIT, ROLLBACK etc.

Data types of SQL
Just like any other programming language, the facility of defining data of various types is available in
SQL also. Following are the most common data types of SQL.

1) NUMBER
2) CHAR
3) VARCHAR / VARCHAR2
4) DATE
5) LONG
6) RAW/LONG RAW

1. NUMBER
Used to store a numeric value in a field/column. It may be decimal, integer or a real value. General
syntax is

Number(n,d)
Where n specifies the number of digits and
d specifies the number of digits to the right of the decimal point.
e.g marks number(3) declares marks to be of type number with maximum value 999.

pct number(5,2) declares pct to be of type number of 5 digits with two digits to the right of
decimal point.

2. CHAR
Used to store character type data in a column. General syntax is
 Char (size)
where size represents the maximum number of characters in a column. The CHAR type data can hold
at most 255 characters.
e.g name char(25) declares a data item name of type character of upto 25 size long.
3. VARCHAR/VARCHAR2
This data type is used to store variable length alphanumeric data. General syntax is

varchar(size) / varchar2(size)
where size represents the maximum number of characters in a column. The maximum allowed size in
this data type is 2000 characters.
e.g address varchar(50); address is of type varchar of upto 50 characters long.
4. DATE
Date data type is used to store dates in columns. SQL supports the various date formats other that
the standard DD-MON-YY.
e.g dob date; declares dob to be of type date.
5. LONG
This data type is used to store variable length strings of upto 2 GB size.
e.g description long;
6. RAW/LONG RAW
To store binary data (images/pictures/animation/clips etc.) RAW or LONG RAW data type is used. A
column LONG RAW type can hold upto 2 GB of binary data.
e.g image raw(2000);

SQL Commands
a. CREATE TABLE Command:
Create table command is used to create a table in SQL. It is a DDL type of command. The general
syntax of creating a table is

Creating Tables
The syntax for creating a table is
create table <table> (
<column 1> <data type> [not null] [unique] [<column constraint>],
.
<column n> <data type> [not null] [unique] [<column constraint>],
[<table constraint(s)>]

69

);
For each column, a name and a data type must be specified and the column name must be unique
within the table definition. Column definitions are separated by comma. Uppercase and lowercase
letters makes no difference in column names, the only place where upper and lower case letters
matter are strings comparisons. A not null Constraint means that the column cannot have null value,
that is a value needs to be supplied for that column. The keyword unique specifies that no two tuples
can have the same attribute value for this column.

Operators in SQL:
The following are the commonly used operators in SQL

1. Arithmetic Operators +, -, *, /
2. Relational Operators =, <, >, <=, >=, <>
3. Logical Operators OR, AND, NOT

Arithmetic operators are used to perform simple arithmetic operations.
Relational Operators are used when two values are to be compared and
Logical operators are used to connect search conditions in the WHERE Clause in SQL.
Constraints:
Constraints are the conditions that can be enforced on the attributes of a relation. The constraints
come in play when ever we try to insert, delete or update a record in a relation.

1. NOT NULL
2. UNIQUE
3. PRIMARY KEY
4. FOREIGN KEY
5. CHECK
6. DEFAULT

Not null ensures that we cannot leave a column as null. That is a value has to be supplied for that
column.
e.g name varchar(25) not null;
Unique constraint means that the values under that column are always unique.
e.g Roll_no number(3) unique;
Primary key constraint means that a column can not have duplicate values and not even a null value.
e.g. Roll_no number(3) primary key;
The main difference between unique and primary key constraint is that a column specified as unique
may have null value but primary key constraint does not allow null values in the column.
Foreign key is used to enforce referential integrity and is declared as a primary key in some other
table.
e.g cust_id varchar(5) references master(cust_id);
it declares cust_id column as a foreign key that refers to cust_id field of table master. That means we
cannot insert that value in cust_id filed whose corresponding value is not present in cust_id field of
master table.
Check constraint limits the values that can be inserted into a column of a table.
e.g marks number(3) check(marks>=0);
The above statement declares marks to be of type number and while inserting or updating the value
in marks it is ensured that its value is always greater than or equal to zero.
Default constraint is used to specify a default value to a column of a table automatically. This default
value will be used when user does not enter any value for that column.
e.g balance number(5) default = 0;
CREATE TABLE student (
Roll_no number(3) primary key,
Name varchar(25) not null,
Class varchar(10),
Marks number(3) check(marks>0),
City varchar(25));

Data Modifications in SQL
After a table has been created using the create table command, tuples can be inserted into the table,
or tuples can be deleted or modified.

70

INSERT Statement
The simplest way to insert a tuple into a table is to use the insert statement
insert into <table> [(<column i, . . . , column j>)] values (<value i, . . . , value j>);

INSERT INTO student VALUES(101,'Rohan','XI',400,'Jammu');
While inserting the record it should be checked that the values passed are of same data types as the
one which is specified for that particular column.

For inserting a row interactively (from keyboard) & operator can be used.
e.g INSERT INTO student VALUES(&Roll_no’,’&Name’,’&Class’,’&Marks’,’&City’);
In the above command the values for all the columns are read from keyboard and inserted into the
table student.

NOTE:- In SQL we can repeat or re-execute the last command typed at SQL prompt by typing
“/” key and pressing enter.

Roll_no Name Class Marks City
101 Rohan XI 400 Jammu
102 Aneeta Chopra XII 390 Udhampur
103 Pawan Kumar IX 298 Amritsar
104 Rohan IX 376 Jammu

105 Sanjay VII 240 Gurdaspur

113 Anju Mahajan VIII 432 Pathankot
Queries:
To retrieve information from a database we can query the databases. SQL SELECT statement is
used to select rows and columns from a database/relation.

SELECT Command
This command can perform selection as well as projection.
Selection: This capability of SQL can return you the tuples form a relation with all the attributes.
Projection: This is the capability of SQL to return only specific attributes in the relation.
* SELECT * FROM student; command will display all the tuples in the relation student
* SELECT * FROM student WHERE Roll_no <=102;
The above command display only those records whose Roll_no less than or equal to 102.
Select command can also display specific attributes from a relation.
* SELECT name, class FROM student;
The above command displays only name and class attributes from student table.
* SELECT count(*) AS “Total Number of Records” FROM student;
Display the total number of records with title as “Total Number of Records” i.e an alias
We can also use arithmetic operators in select statement, like
* SELECT Roll_no, name, marks+20 FROM student;
* SELECT name, (marks/500)*100 FROM student WHERE Roll_no > 103;

Eliminating Duplicate/Redundant data

DISTINCT keyword is used to restrict the duplicate rows from the results of a SELECT statement.
e.g. SELECT DISTINCT name FROM student;
The above command returns

Name
Rohan
Aneeta Chopra
Pawan Kumar

Conditions based on a range
SQL provides a BETWEEN operator that defines a range of values that the column value must fall for
the condition to become true.
e.g. SELECT Roll_no, name FROM student WHERE Roll_no BETWENN 100 AND 103;

71

The above command displays Roll_no and name of those students whose Roll_no lies in the range
100 to 103 (both 100 and 103 are included in the range).

Conditions based on a list
To specify a list of values, IN operator is used. This operator select values that match any value in the
given list.
e.g. SELECT * FROM student WHERE city IN (‘Jammu’,’Amritsar’,’Gurdaspur’);
The above command displays all those records whose city is either Jammu or Amritsar or Gurdaspur.

Conditions based on Pattern
SQL provides two wild card characters that are used while comparing the strings with LIKE operator.
a. percent(%) Matches any string
b. Underscore(_) Matches any one character
e.g SELECT Roll_no, name, city FROM student WHERE Roll_no LIKE “%3”;
displays those records where last digit of Roll_no is 3 and may have any number of characters in
front.
e.g SELECT Roll_no, name, city FROM student WHERE Roll_no LIKE “1_3”;
displays those records whose Roll_no starts with 1 and second letter may be any letter but ends with
digit 3.
ORDER BY Clause
ORDER BY clause is used to display the result of a query in a specific order(sorted order).
The sorting can be done in ascending or in descending order. It should be kept in mind that the actual
data in the database is not sorted but only the results of the query are displayed in sorted order.
e.g. SELECT name, city FROM student ORDER BY name;
The above query returns name and city columns of table student sorted by name in
increasing/ascending order.
e.g. SELECT * FROM student ORDER BY city DESC;
It displays all the records of table student ordered by city in descending order.
Note:- If order is not specifies that by default the sorting will be performed in ascending order.

GROUP BY Clause
The GROUP BY clause can be used in a SELECT statement to collect data across multiple records
and group the results by one or more columns.
The syntax for the GROUP BY clause is:
SELECT column1, column2, ... column_n, aggregate_function (expression)
FROM tables
WHERE conditions
GROUP BY column1, column2, ... column_n;
aggregate_function can be a function such as SUM, COUNT, MAX, MIN, AVG etc.

e.g SELECT name, COUNT(*) as "Number of employees"
FROM student
WHERE marks>350
GROUP BY city;

HAVING Clause
The HAVING clause is used in combination with the GROUP BY clause. It can be used in a SELECT
statement to filter the records that a GROUP BY returns.
The syntax for the HAVING clause is:
SELECT column1, column2, ... column_n, aggregate_function (expression)
FROM tables
WHERE predicates
GROUP BY column1, column2, ... column_n
HAVING condition1 ... condition_n;

e.g SELECT SUM(marks) as "Total marks"
FROM student
GROUP BY department
HAVING SUM(sales) > 1000;

72

Note: select statement can contain only those attribute which are already present in the group
by clause.
Functions available in SQL

SQL provide large collection of inbuilt functions also called library functions that can be used directly
in SQL statements.

1. Mathematical functions
2. String functions
3. Date & Time functions

1. Mathematical functions
Some of the commonly used mathematical functions are sum() avg(), count(), min(), max() etc.
e.g. SELECT sum(marks) FROM student;
displays the sum of all the marks in the table student.
e.g. SELECT min(Roll_no), max(marks) FROM student;
displays smallest Roll_no and highest marks in the table student.

2. String functions
These functions are used to deal with the string type values like
ASCII, LOWEWR, UPPER, LEN, LEFT, RIGHT, TRIM, LTRIM, RTRIM etc.
ASCII : Returns the ASCII code value of a character(leftmost character of string).
Syntax: ASCII(character)
SELECT ASCII('a') returns 97
SELECT ASCII('A') returns 65
SELECT ASCII('1') returns 49
SELECT ASCII('ABC') returns 65
For Upper character 'A' to 'Z' ASCII value 65 to 90
For Lower character 'A' to 'Z' ASCII value 97 to 122
For digit '0' to '9' ASCII value 48 to 57
NOTE: If no table name is specified then SQL uses Dual table which is a dummy table used for
performing operations.
LOWER : Convert character strings data into lowercase.
Syntax: LOWER(string)
SELECT LOWER('STRING FUNCTION') returns string function
UPPER : Convert character strings data into Uppercase.
Syntax: UPPER(string)
SELECT UPPER('string function') returns STRING FUNCTION
LEN : Returns the length of the character string.
Syntax: LEN(string)
SELECT LEN('STRING FUNCTION') returns 15
REPLACE : Replaces all occurrences of the second string(string2) in the first string(string1) with a
third string(string3).
Syntax: REPLACE('string1','string2','string3')
SELECT REPLACE('STRING FUNCTION','STRING','SQL') returns SQL Function
Returns NULL if any one of the arguments is NULL.
LEFT : Returns left part of a string with the specified number of characters counting from left.LEFT
function is used to retrieve portions of the string.
Syntax: LEFT(string,integer)
SELECT LEFT('STRING FUNCTION', 6) returns STRING
RIGHT : Returns right part of a string with the specified number of characters counting from
right.RIGHT function is used to retrieve portions of the string.
Syntax: RIGHT(string,integer)
SELECT RIGHT('STRING FUNCTION', 8) returns FUNCTION
LTRIM : Returns a string after removing leading blanks on Left side.(Remove left side space or
blanks)
Syntax: LTRIM(string)
SELECT LTRIM(' STRING FUNCTION') returns STRING FUNCTION
RTRIM : Returns a string after removing leading blanks on Right side.(Remove right side space or
blanks)
Syntax: RTRIM(string)

73

SELECT RTRIM('STRING FUNCTION ') returns STRING FUNCTION
REVERSE : Returns reverse of a input string.
Syntax: REVERSE(string)
SELECT REVERSE('STRING FUNCTION') returns NOITCNUF GNIRTS
REPLICATE : Repeats a input string for a specified number of times.
Syntax: REPLICATE (string, integer)
SELECT REPLICATE('FUNCTION', 3) returns FUNCTIONFUNCTIONFUNCTION
SPACE : Returns a string of repeated spaces. The SPACE function is an equivalent of using
REPLICATE function to repeat spaces.
Syntax: SPACE (integer) (If integer is negative, a null string is returned.)
SELECT ('STRING') + SPACE(1) + ('FUNCTION') returns STRING FUNCTION
SUBSTRING : Returns part of a given string.
SUBSTRING function retrieves a portion of the given string starting at the specified
character(startindex) to the number of characters specified(length).
Syntax: SUBSTRING (string,startindex,length)
SELECT SUBSTRING('STRING FUNCTION', 1, 6) returns STRING
SELECT SUBSTRING('STRING FUNCTION', 8, 8) returns FUNCTION

DELETE Command
To delete the record fro a table SQL provides a delete statement. General syntax is:-

DELETE FROM <table_name> [WHERE <condition>];
e.g. DELETE FROM student WHERE city = ‘Jammu’;
This command deletes all those records whose city is Jammu.
NOTE: It should be kept in mind that while comparing with the string type values lowercase
and uppercase letters are treated as different. That is ‘Jammu’ and ‘jammu’ is different while
comparing.

UPDATE Command
To update the data stored in the data base, UOPDATE command is used.

e. g. UPDATE student SET marks = marks + 100;
Increase marks of all the students by 100.

e. g. UPDATE student SET City = ‘Udhampur’ WHERE city = ‘Jammu’;
changes the city of those students to Udhampur whose city is Jammu.

We can also update multiple columns with update command, like
e. g. UPDATE student set marks = marks + 20, city = ‘Jalandhar’

WHERE city NOT IN (‘Jammu’,’Udhampur’);

CREATE VIEW Command

In SQL we can create a view of the already existing table that contains specific attributes of the table.
e. g. the table student that we created contains following fields:
Student (Roll_no, Name, Marks, Class, City)
Suppose we need to create a view v_student that contains Roll_no,name and class of student table,
then Create View command can be used:
CREATE VIEW v_student AS SELECT Roll_no, Name, Class FROM student;
The above command create a virtual table (view) named v_student that has three attributes as
mentioned and all the rows under those attributes as in student table.

We can also create a view from an existing table based on some specific conditions, like
CREATE VIEW v_student AS SELECT Roll_no, Name, Class FROM student WHERE City
<>’Jammu’;

74

The main difference between a Table and view is that

A Table is a repository of data. The table resides physically in the database.
A View is not a part of the database's physical representation. It is created on a table or another view.
It is precompiled, so that data retrieval behaves faster, and also provides a secure accessibility
mechanism.

ALTER TABLE Command

In SQL if we ever need to change the structure of the database then ALTER TABLE command is
used. By using this command we can add a column in the existing table, delete a column from a table
or modify columns in a table.

Adding a column
The syntax to add a column is:-

ALTER TABLE table_name
ADD column_name datatype;

e.g ALTER TABLE student ADD(Address varchar(30));
The above command add a column Address to the table atudent.
If we give command
SELECT * FROM student;
The following data gets displayed on screen:

Roll_no Name Class Marks City Address
101 Rohan XI 400 Jammu
102 Aneeta Chopra XII 390 Udhampur
103 Pawan Kumar IX 298 Amritsar
104 Rohan IX 376 Jammu

105 Sanjay VII 240 Gurdaspur

113 Anju MAhajan VIII 432 Pathankot

Note that we have just added a column and there will be no data under this attribute. UPDATE
command can be used to supply values / data to this column.

Removing a column

ALTER TABLE table_name
DROP COLUMN column_name;

e.g ALTER TABLE Student
DROP COLUMN Address;

The column Address will be removed from the table student.

DROP TABLE Command
Sometimes you may need to drop a table which is not in use. DROP TABLE command is used to
Delete / drop a table permanently. It should be kept in mind that we can not drop a table if it contains
records. That is first all the rows of the table have to be deleted and only then the table can be
dropped. The general syntax of this command is:-
DROP TABLE <table_name>;
e.g DROP TABLE student;
This command will remove the table student

75

Questions : Database and SQL : 1 mark questions

Q1 Write SQL queries to perform the following based on the table PRODUCT having fields as (prod_id,
prod_name, quantity, unit_rate, price, city)

i. Display those records from table PRODUCT where prod_id is more than 100.
ii. List records from table PRODUCT where prod_name is ‘Almirah’
iii. List all those records whose price is between 200 and 500.
iv. Display the product names whose price is less than the average of price.
v. Show the total number of records in the table PRODUCT.

Q2. Define the terms:
i. Database Abstraction
ii. Data inconsistency
iii. Conceptual level of database implementation/abstraction
iv. Primary Key
v. Candidate Key
vi. Relational Algebra
vii Domain

6 Marks Questions SQL

Q1 Write SQL commands for (i) to (viii) on the basis of relations given below:
BOOKS
book_id Book_name author_name Publishers Price Type qty
k0001 Let us C Sanjay mukharjee EPB 450 Comp 15
p0001 Genuine J. Mukhi FIRST PUBL. 755 Fiction 24
m0001 Mastering c++ Kanetkar EPB 165 Comp 60
n0002 Vc++ advance P. Purohit TDH 250 Comp 45
k0002 Near to heart Sanjeev FIRST PUBL. 350 Fiction 30

ISSUED
Book_ID Qty_Issued

L02 13
L04 5
L05 21

i. To show the books of FIRST PUBL Publishers written by P.Purohit.
ii. To display cost of all the books written for FIRST PUBL.
iii. Depreciate the price of all books of EPB publishers by 5%.
iv. To display the BOOK_NAME,price of the books whose more than 3 copies have been issued.
v. To show total cost of books of each type.
vi. To show the detail of the most costly book.

Q2. Write SQL commands for (a) to (f) and write output for (g) on the basis of PRODUCTS relation
given below:

PRODUCT TABLE
PCODE PNAME COMPANY PRICE STOCK MANUFACTURE WARRANTY
P001 TV BPL 10000 200 12-JAN-2008 3
P002 TV SONY 12000 150 23-MAR-2007 4
P003 PC LENOVO 39000 100 09-APR-2008 2
P004 PC COMPAQ 38000 120 20-JUN-2009 2
P005 HANDYCAM SONY 18000 250 23-MAR-2007 3
a) To show details of all PCs with stock more than 110.
b) To list the company which gives warranty for more than 2 years.
c) To find stock value of the BPL company where stock value is sum of the products of price and stock.
d) To show number of products from each company.
e) To count the number of PRODUCTS which shall be out of warranty on 20-NOV-2010.
f) To show the PRODUCT name which are within warranty as on date.

76

g). Give the output of following statement.
(i) Select COUNT(distinct company) from PRODUCT.
(ii) Select MAX(price)from PRODUCT where WARRANTY<=3

Answers: 1 mark questions

Q1
Ans i: select * from product where prod_id > 100;
Ans ii: select * from product where prod_name = ‘Almirah’;
Ans iii: select * from product where price between 200 and 500;
Ans iv: select prod_name from product where price < avg(price);
Ans v: select count(*) from product;

Q2. Define the terms:
i. Database Abstraction
Ans: Database system provides the users only that much information that is required
by them, and hides certain details like, how the data is stored and maintained in
database at hardware level. This concept/process is Database abstraction.
ii. Data inconsistency
Ans: When two or more entries about the same data do not agree i.e. when one of
them stores the updated information and the other does not, it results in data
inconsistency in the database.
iii. Conceptual level of database implementation/abstraction
Ans: It describes what data are actually stored in the database. It also describes the
relationships existing among data. At this level the database is described logically in
terms of simple data-structures.
iv. Primary Key
Ans : It is a key/attribute or a set of attributes that can uniquely identify tuples within the relation.
v. Candidate Key
Ans : All attributes combinations inside a relation that can serve as primary key are candidate key as
they are candidates for being as a primary key or a part of it.
vi. Relational Algebra
Ans : It is the collections of rules and operations on relations(tables). The various operations are
selection, projection, Cartesian product, union, set difference and intersection, and joining of relations.
vii. Domain
Ans : it is the pool or collection of data from which the actual values appearing in a given column are
drawn.

Answers: 6 Marks Questions:
Q1.
Ans i: select * from books where publishers=’FIRST PUBL’
Ans ii: select sum(price*qty) from books where publishers=’FIRST PUBL’;
Ansiii: update books set price=price-0.5*price where publishers=’EPB’;
Ans iv: select BOOK_NAME,price from books, issued where
books.book_id=issued.book_id and quantity_issued>3;
Ans v: select sum(price*qty) from books group by type;
Ans vi: select * from books where price=(select max(price) from books));

Q2.
Ans a: select * from products where pname=’TV’ and stock>110;
Ans b: select company from products where warranty>2;
Ans c: select sum(price*stock) from PRODUCTS where company=’BPL’;
Ans d: select company,COUNT(*) from products group by company;
Ans e: select count(*) from products where (‘20-NOV-2010’- manufacture)/365>warranty;

77

Ans f: select pname from products where (sysdate- manufacture)/365<warranty;

Ansg (i): 4
Ans(ii): 39000

Some practice questions from Database and SQL :

2 marks questions
 1. What is relation? What is the difference between a tuple and an attribute?

2. Define the following terminologies used in Relational Algebra:
(i) selection (ii) projection (iii) union (iv) Cartesian product

3. What are DDL and DML?
4. Differentiate between primary key and candidate key in a relation?
5. What do you understand by the terms Cardinality and Degree of a relation in relational

database?
6. Differentiate between DDL and DML. Mention the 2 commands for each caterogy.

6 marks questions
 1.

Table : SchoolBus
Rtno Area_overed Capacity Noofstudents Distance Transporter Charges
1 Vasant kunj 100 120 10 Shivamtravels 100000
2 Hauz Khas 80 80 10 Anand travels 85000
3 Pitampura 60 55 30 Anand travels 60000
4 Rohini 100 90 35 Anand travels 100000
5 Yamuna Vihar 50 60 20 Bhalla Co. 55000
6 Krishna Nagar 70 80 30 Yadav Co. 80000
7 Vasundhara 100 110 20 Yadav Co. 100000
8 Paschim Vihar 40 40 20 Speed travels 55000
9 Saket 120 120 10 Speed travels 100000
10 Jank Puri 100 100 20 Kisan Tours 95000

(b) To show all information of students where capacity is more than the no of student in order of
rtno.

(c) To show area_covered for buses covering more than 20 km., but charges less then 80000.
(d) To show transporter wise total no. of students traveling.
(e) To show rtno, area_covered and average cost per student for all routes where average cost

per student is - charges/noofstudents.
(f) Add a new record with following data:

(11, “ Moti bagh”,35,32,10,” kisan tours “, 35000)
(g) Give the output considering the original relation as given:

(i) select sum(distance) from schoolbus where transporter= “ Yadav travels”;
(ii) select min(noofstudents) from schoolbus;

 (iii) select avg(charges) from schoolbus where transporter= “ Anand travels”;
(v) select distinct transporter from schoolbus;

2.
TABLE : GRADUATE

S.NO NAME STIPEND SUBJECT AVERAGE DIV.
1 KARAN 400 PHYSICS 68 I
2 DIWAKAR 450 COMP. Sc. 68 I
3 DIVYA 300 CHEMISTRY 62 I
4 REKHA 350 PHYSICS 63 I
5 ARJUN 500 MATHS 70 I
6 SABINA 400 CEHMISTRY 55 II
7 JOHN 250 PHYSICS 64 I
8 ROBERT 450 MATHS 68 I
9 RUBINA 500 COMP. Sc. 62 I

78

10 VIKAS 400 MATHS 57 II
List the names of those students who have obtained DIV 1 sorted by NAME.

(b) Display a report, listing NAME, STIPEND, SUBJECT and amount
of stipend received in a year assuming that the STIPEND is paid every month.

To count the number of students who are either PHYSICS or COMPUTER SC graduates.
To insert a new row in the GRADUATE table: 11,”KAJOL”, 300, “computer sc”, 75, 1

 (e) Give the output of following sql statement based on table GRADUATE:
(i) Select MIN(AVERAGE) from GRADUATE where
SUBJECT=”PHYSICS”;

(ii) Select SUM(STIPEND) from GRADUATE WHERE div=2;
(iii) Select AVG(STIPEND) from GRADUATE where AVERAGE>=65;

(iv) Select COUNT(distinct SUBDJECT) from GRADUATE;
(f) Assume that there is one more table GUIDE in the database as shown below:

Table: GUIDE

g) What will be the output of the following query:
SELECT NAME, ADVISOR FROM GRADUATE,GUIDE WHERE SUBJECT= MAINAREA;

3. Write SQL command for (i) to (vii) on the basis of the table SPORTS

Table: SPORTS

(a) Display the names of the students who have grade ‘C’ in either Game1 or Game2 or both.
(b) Display the number of students getting grade ‘A’ in Cricket.
(c) Display the names of the students who have same game for both Game1 and Game2.
(d) Display the games taken up by the students, whose name starts with ‘A’.
(e) Assign a value 200 for Marks for all those who are getting grade ‘B’ or grade ‘A’ in both Game1

and Game2.
(f) Arrange the whole table in the alphabetical order of Name.
(g) Add a new column named ‘Marks’.

4.Write SQL command for (i) to (vii) on the basis of the table Employees & EmpSalary

Table: Employees
Empid Firstname Lastname Address City
010 Ravi Kumar Raj nagar GZB
105 Harry Waltor Gandhi nagar GZB
152 Sam Tones 33 Elm St. Paris
215 Sarah Ackerman 440 U.S. 110 Upton
244 Manila Sengupta 24 Friends street New Delhi
300 Robert Samuel 9 Fifth Cross Washington

MAINAREA ADVISOR
PHYSICS VINOD
COMPUTER SC ALOK
CHEMISTRY RAJAN
MATHEMATICS MAHESH

Student NO Class Name Game1 Grade Game2 Grade2
10 7 Sammer Cricket B Swimming A
11 8 Sujit Tennis A Skating C
12 7 Kamal Swimming B Football B
13 7 Venna Tennis C Tennis A
14 9 Archana Basketball A Cricket A
15 10 Arpit Cricket A Atheletics C

79

335 Ritu Tondon Shastri Nagar GZB
400 Rachel Lee 121 Harrison St. New York
441 Peter Thompson 11 Red Road Paris

 Table: EmpSalary
Empid Salary Benefits Designation
010 75000 15000 Manager
105 65000 15000 Manager
152 80000 25000 Director
215 75000 12500 Manager
244 50000 12000 Clerk
300 45000 10000 Clerk
335 40000 10000 Clerk
400 32000 7500 Salesman
441 28000 7500 salesman

Write the SQL commands for the following :
(i) To show firstname,lastname,address and city of all employees living in paris

(ii) To display the content of Employees table in descending order of Firstname.

(iii) To display the firstname,lastname and total salary of all managers from the tables
Employee and empsalary , where total salary is calculated as salary+benefits.

(iv) To display the maximum salary among managers and clerks from the table Empsalary.

Give the Output of following SQL commands:
(i) Select firstname,salary from employees ,empsalary where designation = ‘Salesman’ and

Employees.empid=Empsalary.empid;
(ii) Select count(distinct designation) from empsalary;
(iii) Select designation, sum(salary) from empsalary group by designation having count(*) >2;
(iv) Select sum(benefits) from empsalary where designation =’Clerk’;

80

Boolean Algebra

Boolean algebra is an algebra that deals with Boolean values((TRUE and FALSE) . In daily life we
normally asks questions like should I go for shopping or not? Should I watch TV or not? etc.
The answers to these questions will be either yes or no, true or false, 1 or 0, which are truth values.

Truth table:
Truth table is a table, which represents all the possible values of logical variables/statements along
with all the possible results of given combinations of values.

Logical Operators:
Logical operators are derived from the Boolean algebra, which is the mathematical representation of
the concepts without going into the meaning of the concepts.
1. NOT Operator—Operates on single variable. It gives the complement value of
variable.

X X
0 1
1 0

2. OR Operator -It is a binary operator and denotes logical Addition operation and is represented
by ”+” symbol

0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 1

X Y X+Y
0 0 0
0 1 1
1 0 1
1 1 1

3. AND Operator – AND Operator performs logical multiplications and symbol is (.) dot.
0.0=0
0.1=0
1.0=0
1.1=1

Truth table:
X Y X.Y
0 0 0
0 1 0
1 0 0
1 1 1

Basic Logic Gates
A gate is simply an electronic circuit, which operates on one or more signals to produce an output
signal. Gates are digital circuits because the input and output signals are either low (0) or high (1).
Gates also called logic circuits.
There are three types of logic gates:

1. Inverter (NOT gate)
2. OR gate
3. AND gate

1. NOT gate : This gate takes one input and gives a single output. The symbol of this
logic gate is

81

This circuit is used to obtain the compliment of a value.
If X = 0, then X’ = 1.
The truth table for NOT gate is :

2. OR gate : The OR gate has two or more input signals but only one output signal if any of the
input signal is 1(high) the output signal is 1(high).
Truth Table for Two Input OR gate is :

X Y F
0 0 0
0 1 1
1 0 1
1 1 1

The circuit diagram of two inputs OR gate is:-

4. AND Gate
(Circuit
Diagram)

AND gate The AND
gate have two or more than two input signals and produce an output signal. When all the inputs are
1(High) then the output is 1 otherwise output is 0 only.

X Y Z F=X.Y.Z
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

 Circuit diagram of Two input AND gate

Basic postulates of Boolean Algebra:

Boolean algebra consists of fundamental laws that are based on theorem of Boolean algebra. These
fundamental laws are known as basic postulates of Boolean algebra. These postulates states basic
relations in boolean algebra, that follow:
I If X != 0 then x=1 and If X!=1 then x=0

X X
0 1
1 0

X Y Z F=X+Y+Z
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

82

II OR relations(logical addition)
 0 + 0 = 0

0 + 1 = 1
1 + 0 = 1
 1 + 1 = 1

III AND relations (logical multiplication)
0.0=0
0.1=0
1.0=0
1.1=1

IV Complement Rules

 0 = 1, 1 = 0

Principal of Duality
This principal states that we can derive a Boolean relation from another Boolean relation by
performing simple steps. The steps are:-

1. Change each AND(.) with an OR(+) sign
2. Change each OR(+) with an AND(.) sign
3. Replace each 0 with 1 and each 1 with 0

e.g
 0+0=0 then dual is 1.1=1

 1+0=1 then dual is 0.1=0

Basic theorem of Boolean algebra
Basic postulates of Boolean algebra are used to define basic theorems of Boolean algebra that
provides all the tools necessary for manipulating Boolean expression.
1. Properties of 0 and 1

(a) 0+X=X
(b) 1+X=1
(c) 0.X=0
(d) 1.X=X

2. Indempotence Law
(a) X+X=X
(b) X.X=X

3. Involution Law

 (X) = X
4. Complementarity Law

(a) X + X=1

(b) X. X=0
5. Commutative Law

(a) X+Y=Y+X
(b) X.Y=Y.X

6. Associative Law
(a) X+(Y+Z)=(X+Y)+Z
(b) X(YZ)=(XY)Z

7. Distributive Law
(a) X(Y+Z)=XY_XZ
(b) X=YZ=(X+Y)(X+Z)

8. Absorption Law
(a) X+XY= X
(b) X(X+Y)=X

Some other rules of Boolean algebra

83

 X+XY=X+Y

Demorgan’s Theorem
A mathematician named DeMorgan developed a pair of important rules regarding group
complementation in Boolean algebra.

Demorgan’s First Theorem:
This rule states that the compliment of OR of two operands is same as the AND of the compliments of
those operands.
Mathematically it can be written as:-

Demorgan’s Second Theorem:
This rule states that the compliment of AND of two operands is same as the OR of the compliments of
those operands.
Mathematically it can be written as:-

Derivation of Boolean expression:-

Minterms and Maxterms
 Consider two binary variables x and y combined with an AND operation.

x’y’, x’y, xy’, xy
Each of these four AND terms represents one of the distinct areas in the Venn diagram and is called a
minterm or standard product.

 Consider two binary variables x and y combined with an OR operation.
x’+ y’, x’+ y, x + y’, x + y

Each of these four OR terms represents one of the distinct areas in the Venn diagram and is called a
maxterm or standard sum.

 n Variables can be combined to form 2n minterms or maxterms.
Minterms and Maxterms for Three Binary Variables

Minterms Maxterms
x y Z Term Designation Term Designation
0 0 0 x’y’z’ m0 x+y+z M0

0 0 1 x’y’z m1 x+y+z’ M1

0 1 0 x’yz’ m2 x+y’+z M2

0 1 1 x’yz m3 x+y’+z’ M3

84

A

B

A
B

1 0 0 xy’z’ m4 x’+y+z M4

1 0 1 xy’z m5 x’+y+z’ M5

1 1 0 xyz’ m6 x’+y’+z M6

1 1 1 xyz m7 x’+y’+z’ M7

 A Boolean function may be represented algebraically from a given truth table by forming a
minterm for each combination of the variables that produces a 1 in the function and then
taking the OR of all those terms.

Functions of Three Variables
X y z Function F1 Function F2
0 0 0 0 0
0 0 1 1 0
0 1 0 0 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

F1= x’y’z + xy’z’ + xyz = m1 + m4 + m7

F2= x’yz + xy’z + xyz’ + xyz = m3 + m5 + m6 + m7

 The complement of a Boolean function may be read from the truth table by forming a minterm
for each combination that produces a 0 in the function and then ORing those terms.
F1’ = x’y’z’ + x’yz’ + x’yz + xy’z + xyz’

Example: Express the Boolean function F(A,B,C) = AB + C as a sum of minterms.
Step 1 – Each term must contain all variables
AB = AB(C + C’) = ABC + ABC’
C = C(A + A’) = AC + A’C
 = AC(B + B’) + A’C(B + B’)
 = ABC + AB’C + A’BC + A’B’C
Step 2 – OR all new terms, eliminating duplicates
F(A,B,C) = A’B’C + A’BC + AB’C + ABC’ + ABC

 = m1 + m3 + m5 + m6 + m7

 = Σ(1, 3, 5, 6, 7)
Example: Express the Boolean function F(x,y,z) = x’y + xz as a product of maxterms.

Step 1 – Convert the function into OR terms using the distributive law
F(x,y,z) = (x’y + x)(x’y + z)

 = (x + x’)(y + x)(x’ + z)(y + z)
 = (y + x)(x’ + z)(y + z)

Step 2 – Each term must contain all variables
y + x = y + x + zz’ = (x + y + z)(x + y + z’)
x’ + z = x’ + z + yy’ = (x’ + y + z)(x’ + y’ + z)
y + z = y + z + xx’ = (x + y + z)(x’ + y + z)
step 3 – AND all new terms, eliminating duplicates

 F(x,y,z) = (x + y + z)(x + y + z’)(x’ + y + z)(x’ + y’ + z)
 = (M0 M1 M4 M6)
 = Π(0, 1, 4, 6)

Conversion between Canonical Forms
The complement of a function expressed as the sum of minterms equals the sum of minterms missing
from the original function. This is because the original function is expressed by those minterms that
make the function equal to 1, whereas its complement is a 1 for those minterms that the function is 0.
Example : F (A,B,C) = Σ(0, 2, 4, 6, 7)

F’(A,B,C) = Σ(1, 3, 5) = m1 + m3 + m5

Take the complement of F’ by DeMorgan’s theorem to obtain F in a different form:
85

F(A,B,C) = (m1 + m3 + m5)’ = (m1’ ⋅ m3’ ⋅ m5’) = M1M3M5 = Π(1, 3, 5)
 To convert from one canonical form to the other, interchange the symbols Σ and Π, and list

those numbers missing from the original form.

Standard Forms
 The two canonical forms of Boolean algebra are basic forms that one obtains from reading a

function from the truth table. By definition, each minterm or maxterm must contain all
variables in either complemented or uncomplemented form.

 Another way to express Boolean functions is in standard form. In this configuration, the terms
that form the function may contain one, two, or any number of literals.

 There are two types of standard forms: the sum of products and the product of sums.
 The sum of products is a Boolean function containing AND terms, called product terms, of one

or more literals each. The sum denotes the ORing of these terms.
Example: F1 = y’ + xy + x’yz’

 The product of sums is a Boolean expression containing OR terms, called sum terms. Each
term may have one or more literals. The product denotes the ANDing of these terms.
Example: F2 = x(y’ + z)(x’ + y + z’ + w)

 A Boolean function may also be expressed in nonstandard form.
Example: F3 = (AB + CD)(A’B’ + C’D’)

Minimization of Boolean expressions:-
After obtaining SOP and POS expressions, the next step is to simplify the Boolean expression.
There are two methods of simplification of Boolean expressions.

1. Algebraic Method
2. Karnaugh Map :

1.Algebric method:This method makes use of Boolean postulates, rules and theorems to simplify the
expression. _ _ _ _
Example..1. Simplify ABCD + ABCD +ABCD +ABCD
 _ _ _ _

Solution-- ABCD + ABCD +ABCD +ABCD
 _ _ _
 =ABC(D+D) +ABC(D+D)
 _ _
 =ABC.1 + ABC.1 (D+D=1)
 _
 =AC(B+B)
 =AC.1 =AC

 _ _ _ _ _ _ _ _
Example..2.. Reduce.. X`Y`Z`+X`YZ`+XY`Z`+XYZ`

 _ _ _ _ _ _ _
Solution… X Y Z+XYZ+XYZ+XYZ
 _ _ _ _ _ _ _

=X (Y Z +YZ) +X(Y Z +YZ)
 _ _ _ _ _
=X (Z (Y+Y)) +X(Z(Y+Y))
 _ _ _ _
=X(Z.1) +X(Z.1) (Y+Y=1)

 _ _ _
=XZ+XZ

 _ _
=Z(X+X)

 _
=Z.1

 _
=Z

2. Using Karnaugh Map :

86

A Karnaugh map is graphical display of the fundamental products in a truth table.
For example:
• Put a 1 in the box for any minterm that appears in the SOP expansion.
• Basic idea is to cover the largest adjacent blocks you can whose side length is some power of 2.
• Blocks can “wrap around” the edges.
• For example, the first K-map here represents ()xy xy x y y x+ = + = . (since

y+y’=1)
• The second K-map, similarly, shows ()xy xy x x y y+ = + =

• Remember, group together adjacent cells of 1s, to form largest possible rectangles of sizes that
are powers of 2.

• Notice that you can overlap the blocks if necessary.

Sum Of Products Reduction using K- Map

• In SOP reduction each square represent a minterm.
• Suppose the given function is f(A,B,C,D) = ∑ (0,2,7,8,10,15)
• Enter the 1 in the corresponding position for each minterm of the given function.
• Now the K-map will be as follows

CD C’D’ C’D CD CD’
AB

A’B’

A’B

AB

A’B

For reducing the expression first mark Octet, Quad, Pair then single.
• Pair: Two adjacent 1’s makes a pair.
• Quad: Four adjacent 1’s makes a quad.
• Octet: Eight adjacent 1’s makes an Octet.
• Pair removes one variable.
• Quad removes two variables.

87

1 101191 8

141 151312

61 754

1 2311 0

• Octet removes three variables.

Reduction of expression: When moving vertically or horizontally in pair or a quad or an octet it can be
observed that only one variable gets changed that can be eliminated directly in the expression.
For Example
In the above Ex
Step 1 : In K Map while moving from m7 to m15 the variable A is changing its state Hence it can be
removed directly, the solution becomes B.CD = BCD. This can be continued for all the pairs, Quads,
and Octets.

Step 2 : In K map while moving from m0 to m8 and m2 to m10 the variable A is changing its state.
Hence B’ can be taken similarly while moving from m0 to m2 and m8 to m10 the variable C is changing
its state. Hence D’ can be taken; the solution becomes B’.D’
The solution for above expression using K map is BCD + B’D’.

 2 Marks Questions

1. Write the equivalent Boolean Expression for the following Logic Circuit

2. Write the equivalent Boolean Expression F for the following circuit diagram :

3. Write the equivalent Boolean Expression F for the following circuit diagram :

4. Convert the following Boolean expression into its equivalent Canonical Sum of Product
Form((SOP)

(X’+Y+Z’).(X’+Y+Z).(X’+Y’+Z).(X’+Y’+Z’)
5. Convert the following Boolean expression into its equivalent Canonical Product of Sum form (POS):

A.B’.C + A’.B.C +A’.B.C’
6. Draw a Logical Circuit Diagram for the following Boolean expression:

A.(B+C’)
7. Write the equivalent Boolean Expression F for the following circuit diagram:

8. Prove that XY+YZ+YZ’=Y algebraically
9. Express the F(X,Z)=X+X’Z into canonical SOP form.
10. Write the equivalent Boolean Expression for the following Logic Circuit.

88

11. Interpret the following logical circuit as Boolean expression

12. Design (A+B).(C+D) using NAND Gate
13. Prove x’.y’+y.z = x’yz+x’yz’+xyz+x’yz algebraically.
14. Prove that (a’+b’)(a’+b)(a+b’)=a’b’.
15. A Boolean function F defined on three input variable X,Y,Z is 1 if and only if the number of 1(One)
input is odd (e.g. F is 1 if X=1,Y=0,Z=0). Draw the truth table for the above function and express it in
canonical sum of product form.

3 Marks Questions : Boolean Algebra

1. If F(a,b,c,d)=∑(0,2,4,5,7,8,10,12,13,15), obtain the simplified form using K-Map.
2. If F(a,b,c,d) =∑(0,3,4,5,7,8,9,11,12,13,15), obtain the simplified form using KMap
3. Obtain a simplified form for a boolean expression

F(U,V,W,Z)= π (0,1,3,5,6,7,10,14,15)
4. Reduce the following boolean expression using K-Map

F(A,B,C,D) = ∑(5,6,7,8,9,12,13,14,15)

Answers: 2 Marks Questions : Boolean Algebra

1. F(P,Q)=(P'+Q).(P+Q')
2. A’B+AB+AB’
3. X’(Y’+Z)
4. F(X, Y, Z) =π(4 , 5 , 6 , 7)

=∑(0, 1 , 2 , 3)
= X’. Y’. Z’ + X’. Y’. Z + X’. Y. Z’ + X’. Y. Z

5. A.B’.C + A’.B.C +A’.B.C’ = π (0,1,4,6,7) OR=(A+B+C).(A+B+C’).(A’+B+C).(A’+B’+C).(A’+B’+C’)
6.

7. (A+C)(A’+B)
8. XY+YZ+YZ’=Y

L.H.S.
XY+YZ+YZ’
= XY+Y(Z+Z’)
=XY+Y=Y(X+1)
=Y.1
=Y=RHS

9. F(X,Z)=X+X’Z =X(Y+Y’)+X’(Y+Y’)Z
=XY+XY’+X’YZ+X’Y’Z

89

=XY(Z+Z’)+XY’(Z+Z’)+X’YZ+X’Y’Z
=XYZ+XYZ’+XY’Z+XY’Z’+X’YZ+X’Y’Z

10. XY+(XY)’+X’
11. ab+b’c+c’e’
12.

13. L.H.S.= x’y +y.z
=x’y.1+1.y.z =x’y(z+z’)+(x+x’)y.z
=x’yz+x’yz’+xyz+x’yz =RHS

14. LHS=(a’+b’)(a’+b)(a+b’)
=(a’a’+a’b+a’b’+b’b)(a+b’)
=(a’+a’b+a’b’+0)(a+b’)
=aa’+a’b’+aa’b+a’bb’+a’ab’+a’b’b’
=0+a’b’+0+)+0+0+a’b’=a’b’=RHS

15.
X Y Z F
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1
Canonical SOP
XYZ’+XY’Z+XY’Z’+XYZ

Answers: 3 marks Questions
Boolean Algebra

1. F(a,b,c,d)=∑(0,2,4,5,7,8,10,12,13,15)

F(a,b,c,d)=B1+B2+B3
B1=m0+m4+m12+m8==c’d’
B2=m5+m7+m13+m15=bd
B3=m0+m2+m8+m10=b’d’

F(a,b,c,d)=c’d’+bd+b’d’

2. F(a,b,c,d) =∑(0,3,4,5,7,8,9,11,12,13,15)

F(a,b,c,d)=B1+B2+B3+B4
B1=m0+m4+m12+m8=c’d’
B2=m5+m7+m13+m15=bd
B3=m13+m15+m9+m11=ad
B4=m3+m7+m15+m11=cd

90

F(a,b,c,d)=c’d’+bd+ad+cd

3. F(U,V,W,Z)= π (0,1,3,5,6,7,10,14,15)
F(U,V,W,Z)=B1.B2.B3.B4
B1=M0.M1=(U+V+W)
B2=M1.M3.M5.M7=(U+Z’)
B3=M7.M6.M15.M14=(V’+W’)
B4=M14.M10=(U’+W’+Z)
F(U,V,W,Z)= (U+V+W).(U+Z’).(V’+W’).(U’+W’+Z)

4. F(A,B,C,D) = ∑(5,6,7,8,9,12,13,14,15)
F(A,B,C,D)=B1+B2+B3
B1=M0+M2+M8+M10=B’D’
B2=M0+M1+M4+M5=A’C’
B3=M8+M9+M11+M10=AB’
F(A,B,C,D)=B’D’+A’C’+AB’

91

COMMUNICATION AND NETWORK CONCEPTS

Points to remember

 Network
 The collection of interconnected computers is called a computer network.
 Two computers are said to be interconnected if they are capable of sharing and exchanging

information.

Usages of Networking:
 Resource Sharing
 Reliability
 Cost Factor
 Communication Medium

Resource Sharing means to make all programs, data and peripherals available to anyone on the
network irrespective of the physical location of the resources and the user.
Reliability means to keep the copy of a file on two or more different machines, so if one of them is
unavailable (due to some hardware crash or any other) them its other copy can be used.
Cost factor means it greatly reduces the cost since the resources can be shared
Communication Medium means one can send messages and whatever the changes at one end
are done can be immediately noticed at another.

Evolution of Networking
1969 - First network came into existenceARPANET (ADVANCED RESEARCH PROJECT AGENCY
NETWORK)MID 80’S - NSFNET (NATIONAL SCIENCE FOUNDATION NETWORK)

 Internet is the network of networks.

SWITCHING TECHNIQUES
Switching techniques are used for transmitting data across networks.
Different types are :

• Circuit Switching

1969
ARPANE

T

1980
NSFnet

1990
INTERN

ET

to connect computers at
U.S. defense and different
universities.

a high capacity network to
be used strictly for
academic and engineering
research.

the internetworking of
ARPANET, NSFnet and
other private networks

92

• Message Switching
• Packet Switching

Circuit Switching
• Circuit switching is the transmission technology that has been used since the first

communication networks in the nineteenth century.
• First the complete physical connection between two computers is established and then the

data are transmitted from the source computer to the destination.
• When a call is placed the switching equipment within the system seeks out a physical copper

path all the way from the sender to the receiver.
• It is must to setup an end-to-end connection between computers before any data can be sent.
• The circuit is terminated when the connection is closed.
• In circuit switching, resources remain allocated during the full length of a communication, after

a circuit is established and until the circuit is terminated and the allocated resources are freed.

Message Switching
• In this the source computer sends data or the message to the switching circuit which stores

the data in its buffer.
• Then using any free link to the switching circuit the data is send to the switching circuit.
• Entire message is sent to the destination. It reaches through different intermediate nodes

following the “store and forward” approach.
• No dedicated connection is required.

Packet Switching
• Conceived in the 1960's, packet switching is a more recent technology than circuit switching.
• Packet switching introduces the idea of cutting data i.e. at the source entire message is

broken in smaller pieces called packets which are transmitted over a network without any
resource being allocated.

• Then each packet is transmitted and each packet may follow any rout available and at
destination packets may reach in random order.

• If no data is available at the sender at some point during a communication, then no packet is
transmitted over the network and no resources are wasted.

• At the destination when all packets are received they are merged to form the original
message.

• In packet switching all the packets of fixed size are stored in main memory.

DATA COMMUNICATION TERMINOLOGIES

Data channel
• The information / data carry from one end to another

in the network by channel.

Baud & bits per second
(bps)

• It’s used to measurement for the information carry of
a communication channel.

Measurement Units :-
bit
1 Byte= 8 bits
1 KBPS (Kilo Byte Per Second)= 1024 Bytes ,
1 Kbps (kilobits Per Second) = 1024 bits,

1 Mbps (Mega bits Per Second)=1024 Kbps

Bandwidth
• It is amount of information transmitted or receives

per unit time.

 It is measuring in Kbps/Mbps etc unit.

Transmission Media
• data is transmitted over copper wires, fiber optic cable, radio and microwaves. the term 'media'

is used to generically refer to the physical connectors, wires or devices used to plug things
together.

93

Basic communications media types
• Copper

o unshielded twisted pair (utp)
o shielded twisted pair (stp)
o coaxial cable (thinnet, thicknet)

• Fiber optic
o single-mode
o multi-mode

• Infrared
• Radio & microwave

Twisted Pair Cable
• These cables consist of two insulated copper wires twisted around each other in a double

helix.
• Twisting of wires reduces crosstalk which is bleeding of a signal from one wire to

another.
Types:

• Unshielded Twisted Pair (UTP)
• Shielded Twisted Pair (STP

STP offers greater protection from interference and crosstalk due to shielding.
But it is heavier and costlier than UTP.
USE 1. In local telephone communication
 2. For digital data transmission over short distances upto 1 km
Advantages:

• Easy to install and maintain
• Simple
• Inexpensive
• Low weight
• Suitable for small (Local) Networks

Disadvantages:
• Not suitable for long distance due to high attenuation.
• Low bandwidth support.
• Low Speed

Coaxial cable
• Coaxial cable consists of a solid copper wire core surrounded by a plastic cladding shielded in

a wire mesh.
• Shield prevents the noise by redirecting it to ground.
•

Types:
Coaxial cable comes in two sizes which are called thinnet and thicknet.
• Thicknet : segment length upto 500 m
• Thinnet : segment length upto 185 m

USE:
In TV channel communication
Advantages:

• Better than twisted wire cable.
• Popular for TV networks.

94

• Offers higher bandwidth & Speed

• Disadvantages:

• Expensive than twisted wires.
• Not compatible with twisted wire cable.

Optical Fibres
• Thin strands of glass or glass like material designed to carry light from one source to

another.
• Source converts (Modulates) the data signal into light using LED (Light Emitting Diodes) or

LASER diodes and send it over the Optical fiber.
It consists of three parts:

1. The core: glass or plastic through which the light travels.
2. The cladding : covers the core and reflects light back to the core
3. Protective coating : protects the fiber

Advantages
• Not affected by any kind of noise.
• High transmission capacity
• Speed of Light
• Suitable for broadband communication

Disadvantages
• Installation requires care.
• Connecting two Optical fibers is difficult.
• Optical fibers are more difficult to solder
• Most expensive

Microwaves
Microwaves are transmitted from the transmitters placed at very high towers to the receivers at a long
distance.

Microwaves are transmitted in line of sight fashion, and also propagated through the surfaces.

Advantages
• Maintenance easy than cables.
• Suitable when cable can not be used.

Disadvantages
• Repeaters are required for long distance communication.
• Less Bandwidth available

Satellite
Geostationary satellites are placed around 36000 KM away from the earth’s surface. In satellite
communication transmitting station transmits the signals to the satellite. (It is called up-linking). After
receiving the signals (microwaves) it amplifies them and transmit back to earth in whole visibility area.
Receiving stations at different places can receive these signals. (It is called down-linking).

95

Advantage
• Area coverage is too large

Disadvantage
• High investment

Network devices

Modem
• A modem is a computer peripheral that allows you to connect and communicate with other

computers via telephone lines.
• Modem means Modulation/ Demodulation.
• Modulation: A modem changes the digital data from your computer into analog data, a

format that can be carried by telephone lines.
• Demodulation: The modem receiving the call then changes the analog signal back into

digital data that the computer can digest.
• The shift of digital data into analog data and back again, allows two computers to speak

with one another.

RJ- 45 Connector
RJ-45 is short for Registered Jack-45. It is an eight wire connector which is commonly used to
connect computers on the local area networks i.e., LAN.

Network Interface Cards (Ethernet Card)
• A network card, network adapter or NIC (network interface card) is a piece of computer

hardware designed to allow computers to communicate over a computer network. It provides
physical access to a networking medium and often provides a low-level addressing system
through the use of MAC addresses. It allows users to connect to each other either by using
cables or wirelessly.

Repeaters

A repeater is an electronic device that
receives a signal and retransmits it at a
higher level or higher power, or onto the
other side of an obstruction, so that the
signal can cover longer distances without
degradation. In most twisted pair Ethernet
configurations, repeaters are required for
cable runs longer than 100 meters.

96

http://en.wikipedia.org/wiki/Retransmit
http://en.wikipedia.org/wiki/Signal_(information_theory)
http://en.wikipedia.org/wiki/Electronics
http://en.wikipedia.org/wiki/MAC_address
http://en.wikipedia.org/wiki/Computer_hardware
http://en.wikipedia.org/wiki/Computer_hardware

Hubs

A hub contains multiple ports. When a packet arrives at one port,
it is copied to all the ports of the hub. When the packets are
copied, the destination address in the frame does not change to a
broadcast address. It does this in a rudimentary way, it simply
copies the data to all of the Nodes connected to the hub.

BridgesA network bridge connects multiple network
segments at the data link layer (layer 2) of the OSI
model. Bridges do not promiscuously copy traffic to all
ports, as hubs do, but learn which MAC addresses are
reachable through specific ports. Once the bridge
associates a port and an address, it will send traffic for
that address only to that port. Bridges do send
broadcasts to all ports except the one on which the
broadcast was received.
.

Switches
Switch is a device that performs switching. Specifically, it forwards and filters OSI layer 2 datagrams

(chunk of data communication) between ports (connected cables) based on the Mac-
Addresses in the packets. This is distinct from a hub in that it only forwards the datagrams to
the ports involved in the communications rather than all ports connected. Strictly speaking, a
switch is not capable of routing traffic based on IP address (layer 3) which is necessary for
communicating between network segments or within a large or complex LAN.

Routers
• Routers are networking devices that forward data packets between networks using headers

and forwarding tables to determine the best path to forward the packets. Routers work at the
network layer of the TCP/IP model or layer 3 of the OSI model. Routers also provide
interconnectivity between like and unlike media (RFC 1812).

• A router is connected to at least two networks, commonly two LANs or WANs or a LAN and its
ISP's network.

GATEWAY
A Gateway is a network device that connects dissimilar
networks. It established an intelligent connection between a
local area network and external networks with completely
different structures.

Network topologies and types

Network topology

• Computer networks may be classified according to the network topology upon which the
network is based, such as Bus network, Star network, Ring network, Mesh network, Star-bus
network, Tree or Hierarchical topology network, etc.

• Network Topology signifies the way in which intelligent devices in the network see their logical
97

http://en.wikipedia.org/wiki/Tree_and_hypertree_networks
http://en.wikipedia.org/wiki/Star-bus_network
http://en.wikipedia.org/wiki/Star-bus_network
http://en.wikipedia.org/wiki/Mesh_network
http://en.wikipedia.org/wiki/Ring_network
http://en.wikipedia.org/wiki/Star_network
http://en.wikipedia.org/wiki/Bus_network
http://en.wikipedia.org/wiki/Network_topology
http://tools.ietf.org/html/rfc1812
http://en.wikipedia.org/wiki/OSI_model
http://en.wikipedia.org/wiki/Network_layer
http://en.wikipedia.org/wiki/MAC_Address
http://en.wikipedia.org/wiki/OSI_model
http://en.wikipedia.org/wiki/OSI_model
http://en.wikipedia.org/wiki/OSI_model
http://en.wikipedia.org/wiki/Data_link_layer
http://en.wikipedia.org/wiki/Network_segment
http://en.wikipedia.org/wiki/Network_segment
http://en.wikipedia.org/wiki/Network_segment
http://en.wikipedia.org/wiki/Network_segment

relations to one another.

Mesh Topology
• The value of fully meshed networks is proportional to the exponent of the number of

subscribers, assuming that communicating groups of any two endpoints, up to and including
all the end points.

Star Topology
The type of network topology in which each of the nodes of the network is
connected to a central node with a point-to-point link in a 'hub' and 'spoke'
fashion, the central node being the 'hub' and the nodes that are attached to the
central node being the 'spokes' (e.g., a collection of point-to-point links from
the peripheral nodes that converge at a central node) – all data that is
transmitted between nodes in the network is transmitted to this central node,
which is usually some type of device that then retransmits the data to some or
all of the other nodes in the network, although the central node may also be a
simple common connection point (such as a 'punch-down' block) without any
active device to repeat the signals.

Bus Topology

• The type of network topology in which all of the nodes of the
network are connected to a common transmission medium
which has exactly two endpoints (this is the 'bus', which is also
commonly referred to as the backbone, or trunk) – all data that
is transmitted between nodes in the network is transmitted over
this common transmission medium and is able to be received
by all nodes in the network virtually simultaneously
(disregarding propagation delays).

Ring Topology
The type of network topology in which each of the nodes of the network is

connected to two other nodes in the network and with the first and
last nodes being connected to each other, forming a ring – all data
that is transmitted between nodes in the network travels from one
node to the next node in a circular manner and the data generally
flows in a single direction only.

Compter Networks
A communications network is two or more computers connected to share data and resources are

“networked.” The simple idea behind computer networking is to allow users to access more

98

Server

Server

Server

http://en.wikipedia.org/wiki/Propagation_delay
http://en.wikipedia.org/wiki/Receiver_(Information_Theory)
http://en.wikipedia.org/wiki/Transmitted
http://en.wikipedia.org/wiki/Data
http://en.wikipedia.org/wiki/Trunk_(telecommunications)
http://en.wikipedia.org/wiki/Backbone_network

information and give them access to devices not directly attached to their “local” system, such
as printers or storage devices

Local Area Network (LAN)
A network covering a small geographic area, like a home, office, or building. Current LANs are most

likely to be based on Ethernet technology. For example, a library will have a wired or a
communications network is two or more computers connected to share data and resources
are “networked.” The simple idea behind computer networking is to allow users to access
more information and give them access to devices not directly attached to their “local” system,
such as printers or storage devices.

Metropolitan Area Network (MAN)
• A Metropolitan Area Network is a network that connects two or more Local Area Networks or

Campus Area Networks together but does not extend beyond the boundaries of the immediate
town, city, or metropolitan area. Multiple routers, switches & hubs are connected to create a
MAN.

 Wide Area Network (WAN)
• WAN is a data communications network that covers a relatively broad geographic area (i.e.

one city to another and one country to another country) and that often uses transmission
facilities provided by common carriers, such as telephone companies. WAN technologies
generally function at the lower three layers of the OSI reference model: the physical layer, the
data link layer, and the network layer.

Network Protocols

Protocols
• A protocol means the rules that are applicable for a network.
• It defines the standardized format for data packets, techniques for detecting and correcting

errors and so on.
• A protocol is a formal description of message formats and the rules that two or more machines

must follow to exchange those messages.
• E.g. using library books.
Types of protocols are:

1. HTTP
2. FTP
3. TCP/IP
4. SLIP/PPP

• Hypertext Transfer Protocol (HTTP) is a communications protocol for the transfer of
information on the intranet and the World Wide Web. Its original purpose was to provide a
way to publish and retrieve hypertext pages over the Internet.

• HTTP is a request/response standard between a client and a server. A client is the end-
user; the server is the web site.

• FTP (File Transfer Protocol) is the simplest and most secure way to exchange files
over the Internet. The objectives of FTP are:

• To promote sharing of files (computer programs and/or data).
• To encourage indirect or implicit use of remote computers.
• To shield a user from variations in file storage systems among different hosts.
• To transfer data reliably, and efficiently.

• TCP/IP (Transmission Control Protocol / Internet Protocol)
TCP - is responsible for verifying the correct delivery of data from client to server. Data can be
lost in the intermediate network. TCP adds support to detect errors or lost data and to trigger
retransmission until the data is correctly and completely received.

99

http://en.wikipedia.org/wiki/Network_layer
http://en.wikipedia.org/wiki/Data_link_layer
http://en.wikipedia.org/wiki/Physical_layer
http://en.wikipedia.org/wiki/OSI_model

IP - is responsible for moving packet of data from node to node. IP forwards each packet based
on a four byte destination address (the IP number). The Internet authorities assign ranges of
numbers to different organizations. The organizations assign groups of their numbers to
departments. IP operates on gateway machines that move data from department to organization
to region and then around the world.

• SLIP/PPP (Serial Line Internet Protocol / Point to Point Protocol)
SLIP/PPP provides the ability to transport TCP/IP traffic ever serial line between two computers.
The home user’s computer has a communications link to the internet. The home user’s computer
has the networking software that can speak TCP/IP with other computers on the Internet. The
home user’s computer has an identifying address (IP address) at which it can be contacted by
other computers on Internet. E.g. dial up connection.

Telnet-
It is an older internet utility that lets us log on to remote computer system. It also facilitates for terminal
emulation purpose. Terminal emulation means using a pc like a mainframe computer through
networking.
(i) Run telnet client- Type telnet in run dialog box.
(ii) Connect to telnet site -specify the host name, port and terminal type.
(iii) Start browsing- surf the shown site with provided instruction.
(iv) Finally disconnect-press Alt+F4.

Wireless/Mobile Computing
Wireless communication is simply data communication without the use of landlines. Mobile
computing means that the computing device is not continuously connected to the base or central
network.
1. GSM(Global System for Mobile communication): it is leading digital cellular system. In
covered areas, cell phone users can buy one phone that will work any where the standard is
supported. It uses narrowband TDMA, which allows eight simultaneous calls on the same radio
frequency.
2. CDMA(Code Division Multiple Access): it is a digital cellular technology that uses spread-
spectrum techniques. CDMA does not assign a specific frequency to each user. Instead ,every
channel uses the full available spectrum.
3. WLL(Wireless in Local Loop) : WLL is a system that connects subscribers to the public
switched telephone network using radio signals as a substitute for other connecting media.
4. Email(Electronic Mail): Email is sending and receiving messages by computer.
5. Chat: Online textual talk in real time , is called Chatting.
6. Video Conferencing: a two way videophone conversation among multiple participants is
called video conferencing.
7. SMS(Short Message Service): SMS is the transmission of short text messages to and from
a mobile pone, fax machine and or IP address.
8. 3G and EDGE: 3G is a specification for the third generation of mobile communication of mobile
communication technology. 3G promises increased bandwidth, up to 384 Kbps when a device is
stationary.
EDGE(Enhanced Data rates for Global Evolution) is a radio based high speed mobile
data standard.

NETWORK SECURITY CONCEPTS
 Protection methods

1 Authorization - Authorization confirms the service requestor's credentials. It determines if
the service requestor is entitled to perform that operation.
2 Authentication - Each entity involved in using a web service the requestor, the provider and
the broker(if there is one) - is what it actually claims to be.
3 Encryption – conversion of the form of data from one form to another form.
4 Biometric System - involves unique aspect of a person's body such as Finger-prints, retinal
patterns etc to establish his/her Identity.

100

5 Firewall - A system designed to prevent unauthorized access to or from a private
network is called firewall. it can be implemented in both hardware and software or combination
or both.

There are several types of firewall techniques-

* Packet filter- accepts or rejects of packets based on user defined rules.
* Application gateway- security mechanism to specific application like FTP and Telnet

servers.
* Circuit level gateway - applies security mechanism when a connection is established.
* Proxy Server - Intercepts all messages entering and leaving the network.

Cookies - Cookies are messages that a web server transmits to a web browser so that the web
server can keep track of the user’s activity on a specific web site. Cookies have few parameters
name, value, expiration date

Hackers and crackers -
Hackers are more interested in gaining knowledge about computer systems and possibly using this
knowledge for playful pranks.
Crackers are the malicious programmers who break into secure systems.

Cyber Law -
It is a generic term, which refers to all the legal and regulatory aspects of internet and the World Wide
Web.

WEB SERVERS

WWW (WORLD WIDE WEB)
It is a small part of Internet. It is a kind of Application of internet.It is a set of protocols that allows us to
access any document on the Net through a naming system based on URLS. Internet was mainly used
for obtaining textual information. But post-WWW the internet popularity grew tremendously because
of graphic intensive nature of www.

Attributes of WWW
(i) User friendly- www resources can be easily used with the help of browser.
(ii) Multimedia documents-A web page may have graphic, audio, video, and animation etc at a time.
(iii) Hypertext and hyperlinks-the dynamic links which can move towards another web page is
hyperlink.
(iv) Interactive -www with its pages support and enable interactivity between users and servers.
(v) frame-display of more than one section on single web page.
Web server- It is a WWW server that responds to the requests made by web browers.
 e.g. : Apache, IIS, PWS(Personal web server for Windows 98).
Web browser- It is a WWW client that navigates through the World Wide Web and displays web
pages. E.g.: FireFox Navigator, Internet Explorer etc.
Web sites- A location on a net server where different web pages are linked together by dynamic links
is called a web site. Each web site has a unique address called URL.
Web page - A document that can be viewed in a web browser and residing on a web site is a web
page.
Home page- a web page that is the starting page and acts as an indexed page is home page.
Web portal - that facilitates various type of the functionality as web site. for e.g.
www.yahoo.com,www.rediff.com
Domain name- An internet address which is a character based is called a Domain name. Some most
common domains are com, edu, gov, mil, net, org, and co.Some domain names are location based
also. For e.g. au for Australia, a for Canada, in for India etc.
URL- A URL (uniform resource locator) that specifies the distinct address for each resource on the
internet.e.g.http://encycle.msn.com/getinfo/stypes.asp
Web hosting - means hosting web server application on a computer system through which electronic
content on the internet is readily available to any web browser client.
HTML -
It stands for Hyper Text Markup Language that facilitates to write web document that can be

101

interpreted by any web browser. It provide certain tags that are interpreted by the browser how to
display and act with the text, graphics etc. tags are specified in <>.
For e.g.
<body bgcolor=green> it is opening tag
</body> it is closing tag.
body is the tag with bgcolor attributes.
XML (eXtensible Markup Language)
XML is a markup language for documents containing structured information. Structured information
contains both content (words, pictures etc.) and some indication of what role content plays.
DHTML- It stands for Dynamic Hyper Text Markup Language. DHTML refers to Web content that
changes each time it is viewed. For example, the same URL could result in a different page
depending on any number of parameters, such as:
 *geographic location
 *time of the day
 *previous pages viewed by the user
 *profile of the reader
WEB SCRIPTING – The process of creating and embedding scripts in a web page is known as web-
scripting.
SCRIPT: A Script is a list of commands embedded in a web page. Scripts are interpreted and
executed by a certain program or scripting –engine.

Types of Scripts:
1. Client Side Script: Client side scripting enables interaction within a web page.
 Some popular client-side scripting languages are VBScript, JavaScript, PHP(Hyper Text
Preprocessor).
2. Server-Side Scripts: Server-side scripting enables the completion or carrying out a task at the
server-end and then sending the result to the client –end.
Some popula server-side Scripting Languages are PHP, Perl, ASP(Active Server Pages), JSP(Java
Server Pages) etc.

OPEN SOURCE TERMINOLOGIES
TERMINOLOGY & DEFINITIONS:

 Free Software: The S/W’s is freely accessible and can be freely used changed
improved copied and distributed by all and payments are needed to make for free S/W.
 Open Source Software: S/w whose source code is available to the customer and it
can be modified and redistributed without any limitation .OSS may come free of cost but
nominal charges has to pay nominal charges (Support of S/W and development of S/W).
 FLOSS (Free Libre and Open Source Software) : S/w which is free as well as open
source S/W. (Free S/W + Open Source S/W).
 GNU (GNU’s Not Unix) : GNU project emphasize on the freedom and its objective is to
create a system compatible to UNIX but not identical with it.
 FSF (Free Software Foundation) : FSF is a non –profit organization created for the
purpose of the free s/w movement. Organization funded many s/w developers to write free
software.
 OSI (Open Source Initiative) : Open source software organization dedicated to cause
of promoting open source software it specified the criteria of OSS and its source code is not
freely available.
 W3C(World Wide Web Consortium) : W3C is responsible for producing the software
standards for World Wide Web.
 Proprietary Software: Proprietary Software is the s/w that is neither open nor freely
available, normally the source code of the Proprietary Software is not available but further
distribution and modification is possible by special permission by the supplier.
 Freeware: Freeware are the software freely available , which permit redistribution but
not modification (and their source code is not available). Freeware is distributed in Binary
Form (ready to run) without any licensing fees.
 Shareware: Software for which license fee is payable after some time limit, its source
code is not available and modification to the software are not allowed.

102

 Localization: localization refers to the adaptation of language, content and design to
reflect local cultural sensitivities .e.g. Software Localization: where messages that a program
presents to the user need to be translated into various languages.
 Internationalization: Opposite of localization.

OPEN SOURCE / FREE SOFTWARE
 Linux : Linux is a famous computer operating system . popular Linux server set of
program –LAMP(Linux, Apache, MySQL, PHP)
 Mozilla : Mozilla is a free internet software that includes

• a web browser
• an email client
• an HTML editor
• IRC client

 Apache server: Apache web server is an open source web server available for many
platforms such as BSD, Linux, and Microsoft Windows etc.

• Apache Web server is maintained by open community of developers of Apache
software foundation.

 MYSQL : MYSQL is one of the most popular open source database system. Features of
MYSQl :

• Multithreading
• Multi –User
• SQl Relational Database Server
• Works in many different platform

 PostgreSQL : Postgres SQL is a free software object relational database server .
PostgresSQL can be downloaded from www.postgressql.org.

 Pango : Pango project is to provide an open source framework for the layout and rendering of
internationalized text into GTK + GNOME environment.Pango using Unicode for all of its
encoding ,and will eventually support output in all the worlds major languages.

 OpenOffice : OpenOffice is an office applications suite. It is intended to compatible and
directly complete with Microsoft office.
OOo Version 1.1 includes:

• Writer (word processor)
• Calc(spreadsheet)
• Draw(graphics program)
• etc

 Tomcat : Tomcat functions as a servlet container. Tomcat implements the servlet and the
JavaServer Pages .Tomcat comes with the jasper compiler that complies JSPs into servlets.

 PHP(Hypertext Preprocessor) : PHP is a widely used open source programming language
for server side application and developing web content.

 Python: Python is an interactive programming language originally as scripting language for
Amoeba OS capable of making system calls.

1or 2 Marks Questions

1. Explain function of hub and router.
Ans:
 Hub: A hub contains multiple ports. When a packet arrives at one port, it is copied to all the ports
of the hub. When the packets are copied, the destination address in the frame does not change to a
broadcast address. It does this in a rudimentary way, it simply copies the data to all of the Nodes
connected to the hub.
2. Router : routers are networking devices that forward data packets between networks using
headers and forwarding tables to determine the best path to forward the packets

2. Expand the following terms
 (i) URL (ii) ISP (iii) DHTML (iv) CDMA:
Ans; (i) URL: Unified Resource Locator
 (ii) ISP: Internet Service Provider.

103

http://www.postgressql.org/

 (iii) DHTML: Dynamic Hyper Text Markup Language

3. Differentiate between message switching and packet switching
Ans: Message Switching – In this form of switching no physical copper path is established in
advance between sender and receiver. Instead when the sender has a block of data to be sent, it is
stored in first switching office, then forwarded later. Packet Switching – With message switching there
is no limit on block size, in contrast packet switching places a tight upper limit on block size.

4. Write two applications of Cyber Law.
Ans: Two applications of cyber law are Digital Transaction and Activities on Internet.

5. Explain GSM.
Ans: Global system for mobile, communications is a technology that uses narrowband TDMA, which
allows eight simultaneous calls on the same radio frequency. TDMA is short for Time Division Multiple
Access. TDMA technology uses time division multiplexing and divides a radio frequency into time
slots and then allocates these slots to multiple calls thereby supporting multiple, simultaneous data
channels.

6. Write difference between coaxial and optical cable.
 Ans: Coaxial cable consists of a solid wire core surrounded by one or more foil or wire shield , each
separated by some kind of plastic insulator. Optical fibers consists of thin strands of glass or glass like
material which are so constructed that they carry light from a source at one end of the fiber to a
detector at the other end.

7. Write two advantage and disadvantage of RING topology.
Ans:

 Advantages:
1. Short cable length.
2. No wiring closet space required.
Disadvantages:
1. Node failure causes network failure
2. difficult to diagnose faults

8. Define Open Source Software, Free Software, Freeware, and Shareware.
 Ans:

Free Software : The S/W’s is freely accessible and can be freely used changed improved copied
and distributed by all and payments are needed to made for free S/W.
Open Source Software : S/w whose source code is available to the customer and it can be
modified and redistributed without any limitation .OSS may come free of cost but nominal charges
has to pay nominal charges (Support of S/W and development of S/W).
Freeware: Freeware are the software freely available , which permit redistribution but not
modification (and their source code is not available). Freeware is distributed in Binary Form (ready
to run) without any licensing fees.
Shareware: Software for which license fee is payable after some time limit, its source code is not
available and modification to the software are not allowed.

8. What is the difference between WAN and MAN?
Ans: MAN (Metropolitan Area Network) is the network spread over a city.
 WAN (Wide Area Network) spread across countries.

10. What is the purpose of using FTP?
Ans: (i)To promote sharing of files (computer programs and/or data).
 (ii)To encourage indirect or implicit use of remote computers

11. What is a Modem?

104

javascript:void(0)

Ans: A modem is a computer peripheral that allows you to connect and communicate with other
computers via telephone lines.

12. How is a Hacker different from a Cracker?
Ans: Hackers are more interested in gaining knowledge about computer systems and possibly using
this knowledge for playful pranks.
Crackers are the malicious programmers who break into secure systems

13. Expand the following terms with respect to Networking:
(i) Modem (ii) WLL (iii) TCP/IP (iv) FTP
Ans: (i) Modem : Modulator/Demodulator
 (ii) WLL: Wireless in Local Loop
 (iii) TCP/IP: Transmission Control Protocol/Internet Protocol

iv) FTP: File Transfer Protocol

14. What are Protocols?
Ans: A protocol means the rules that are applicable for a network.

It defines the standardized format for data packets, techniques for detecting and correcting
errors and so on.
A protocol is a formal description of message formats and the rules that two or more machines
must follow to exchange those messages.
E.g. using library books.

Types of protocols are:
1. HTTP
1. FTP
2. TCP/IP
3. SLIP/PPP

15. What is the difference between Repeater and a Bridge? 1
Ans: A Repeater is a network device that amplifies and restores signals for long distance transmission
where as a Bridge is a network device that established an intelligent connection between two local
networks with the same standard but with different types of cables.

HOTS (HIGHER ORDER THINKING SKILLS)
4 Marks Questions
1. Knowledge Supplement Organization has set up its new centre at Mangalore for its office and web
based activities. It has four building as shown in the diagram below 4

Centre to Centre distance between various buildings

Alpha to Beta 50m
 Beta to gamma 150m
Gamma to Lambda 25m
 Alpha to Lambda 170m
Beta to Lambda 125m

 alpha Gamma

Beta

Lambda

Alpha 25
Beta 50
Gamma 125
Lambda 10

105

Alpha to Gamma 90m

(a) Suggesting a cable layout of connection between building state with justification where Server,
Repeater and hub will be placed. 2

(b) The organization is planning to link its front office situated in the city in a hilly region where
cable connection is not feasible, suggest an economic way to connect it with reasonably high
speed?

Ans: (i)The most suitable place to house the server of this organization would be building Gamma ,
as this building contains the maximum number of computers , thus decreasing the cabling cost for
most of the computers as well as increasing the efficiency of the maximum computers in the network
Distance between alpha to gamma and beta to gamma is large so there repeater will require and hub
is necessary for all premises because it is used in local networking.

(ii) The most economic way to connect it with a reasonable high speed would be to use radio wave
transmission, as they are easy to install, can travel long distances, and penetrate buildings easily, so
they are widely used for communication, both indoors and outdoors. Radio waves also have the
advantage of being omni directional, which is they can travel in all the directions from the source, so
that the transmitter and receiver do not have to be carefully aligned physically.
2. Software Development Company has set up its new center at Jaipur
 for its office and web based activities. It has 4 blocks of buildings as shown in
 the diagram below:

Center to center distances between various blocks
Black A to Block B 50 m
Block B to Block C 150 m
Block C to Block D 25 m
Block A to Block D 170 m
Block B to Block D 125 m
Block A to Block C 90 m

 Number of Computers

 Alpha
Gamma

Beta
Lambd
a

Repeater

HUB

HUB
HUB

HUB

106

Black A 25
Block B 50
Block C 125
Block D 10

e1) Suggest a cable layout of connections between the blocks.
e2) Suggest the most suitable place (i.e. block) to house the server of this
 company with a suitable reason.
e3) Suggest the placement of the following devices with justification
 (i) Repeater
 (ii) Hub/Switch
e4) the company is planning to link its front office situated in the
 city in a hilly region where cable connection is not feasible, suggest
 an economic way to connect it with reasonably high speed?
Ans:
(e1) (Any of the following option)
Layout Option 1

Layout Option 2

(e2) The most suitable place / block to house the server of this organization would be Block C, as this
block contains the maximum number of computers, thus decreasing the cabling cost for most of the
computers as well as increasing the efficiency of the maximum computers in the network.

(e3)
(i) For Layout 1, since the cabling distance between Blocks A and C, and that between B and C are
quite large, so a repeater each would ideally be needed along their path to avoid loss of signals
during the course of data flow in these routes.
For layout 2, since the distance between Blocks A and C is large so a repeater would ideally be
placed in between this path.
(ii) In both the layouts, a hub/switch each would be needed in all the blocks, to
Interconnect the group of cables from the different computers in each block.
(e4) The most economic way to connect it with a reasonable high speed would be to use radio wave
transmission, as they are easy to install, can travel long distances, and penetrate buildings easily, so
they are widely used for communication, both indoors and outdoors. Radio waves also have the
advantage of being omni directional, which is they can travel in all the directions from the source, so
that the transmitter and receiver do not have to be carefully aligned physically.
3. Ram Goods Ltd. has following four buildings in Ahmedabad city.

107

Computers in each building are networked but buildings are not networked so
far. The company has now decided to connect building also.
(a) Suggest a cable layout for these buildings.
(b) In each of the buildings, the management wants that each LAN segment gets
 a dedicated bandwidth i.e. bandwidth must not be shared. How can this be
 achieved?
(c) The company also wants to make available shared Internet access for each of
 the buildings. How can this be achieved?
(d) The company wants to link its head office in GV1 building to its another office in
 Japan.
(i) Which type of transmission medium is appropriate for such a link?
(ii) What type of network would this connection result into?
Ans:
(a) Total cable length required for this layout = 75 mts

(b) To give dedicated bandwidth, the computers in each building should be
 connected via switches as switches offer dedicated bandwidths.
(c) By installing routers in each building, shared internet access can be made
 Possible.
(d) (i) Satellite as it can connect offices across globe.
 (ii) WAN (Wide Area Network)

108

Computer Science Question Paper with Solution March 2011
Time allowed:3 hours Maximum Marks:70
1. (a) What is difference between Type Casting and Automatic Type Conversion? Also, give a
suitable C++ to illustrate both. 2
Ans. Explicit Type Casting is used to convert value of one type to another type for example

 float x=(float) 3 / 2; // 1.5 will be assigned as result, because 3 is converted into 3.0
Automatic Type Conversion is the type conversion done by the compiler wherever required. e. g.

float x=3/2; //here 1.0 will be assigned as result, because 1 is automatically converted in 1.0
1. (b) Write the names of the header files, which is/are essentially required to run/execute the
following C++ code:
void main() 1
{char CH,Text[]=”+ve Attitude”;
for(int i=0;Text[i]=’\0’’i++)

if(Text[i]==’ ‘)
cout<<endl;

else {CH=toupper(Text[i]);
 cout<<CH;
}

}
Ans. Required header files are iostream.h and ctype.h
1. (c) Rewrite the following program after removing the syntactical errors (if any). Underline
each correction. 2
include<iostream.h>
typedef char[80] String;
 void main()
{String S=”Peace”;
int L=strlen(S);
cout<<S<<’ has ‘<<L<<’characters’<<endl;
}
Ans.
#include<iostream.h>
#include<string.h>
typedef char [80] String;
void main()
{
String S=”Peace”;
int L=strlen(S);
cout<<S<<” has “<<L<<” characters”<<endl;
}
1. (d) Find the output of the following program: 3
#include<iostream.h>
void SwitchOver(int A[], int N, int Split)
{ for (int K=0; K<N; K++)

if(K<Split)
A[K]+=K;

else
A[K]*=K;

}
void display(int A[], int N)
{ for(int K=0; K<N; K++)

(K%2==0) ? cout<<A[K]<<”%” : cout<<A[K]<<endl;
}
void main()
{ int H[30, 40, 50, 20, 10, 5};

SwitchOver(H,6,3);
Display(H, 6);

}
Ans.

109

30%41
52%60
40%25

1. (e) Find the output of the following program : 2
#iinclude<iostream.h>
void main()
{ int *Queen, Moves []={11,22,33,44};

Queen=Moves;
Moves[2]+=22;
cout<<”Queen @”<<*Queen<<endl;
*Queen-=11;
Queen+=2;
cout<<”Now @”<<*Queen<<endl;
Queen++;
cout<<”Finally @”<<*Queen<<endl;
Queen++;
cout<<”New Origin @”<<Moves[0]<<endl;

}
Ans.
Queen @ 11
Now @ 55
Finally @ 44
New Origin @ 0
1. (f) Go through the C++ code shown below, and find out the possible output or outputs from
the suggested ouput options(i) to (iv). Also, write the minimum and maximum values, which
can be assigned to the variable MyNum. 2
#include<iostream.h>
#include<stdlib.h>
void main()
{ randomize();

int MyNum,Max=5;
MyNum=20+random(Max);
for (int N=MyNum; N<=25; N++)

cout<<N<<”*”;
}
(i) 20*21*22*23*24*25
(ii) 22*23*24*25*
(iii) 23*24*
(iv) 21*22*23*24*25
Ans.

(ii) 22*23*24*25*
2. (a) Differentiate between Constructor and Destructor function with respect to Object
Oriented Progaramming. 2
Ans. Constructor is automatically invoked when an object is created and it is used to inialized data
members of the object. Constructors can be overloaded. Whereas Destructors are automatically
invoked when an object goes out of scope and it is used to free all resources allocated by the object
during run-time. Destructor cannot be overloaded.
2.(b) Write the output of the following C++ code. Also, write the name of feature of Object
Oriented Programming used in the following program jointly illustrated by the functions (i) to
(iv): 2
#include <iostream.h>
void Line() //Function (i)
{ for (int L=1; L<=80; L++) cout<<”-“;
 cout<<endl;
}
void Line(int N) //Function (ii)
{for(int L=1; L<=N; L++) cout<<”*”
 cout<<endl;

110

}
void Line(char C, int N) //Function (iii)
{for(int L=1;L<=N;L++) cout<<C;
 cout<<endl;
}
void Linr(int M, int N) //Function (iv)
{for(int L=1; L<=n;L++) cout<<M*L;
 cout<<endl;
}
void main()
{int A=9,B=4,C=3;
char K=’#’;
Line(K,B);
Line(A,C);}
Ans.
#
9 18 27
Function (i) to function (iv) represent function overloading (polymorphism).
2.(c.)Define a class Applicant in C++ with following description: (4)
Private Members

• A data member ANo (Admission Number) of type long
• A data member Name of type string
• A data member Agg(Aggregate Marks) of type float
• A data member Grade of type char
• A member function GradeMe() to find the Grade as per the Aggregate Marks obtained

by a student. Equivalent Aggregate marks range and the respective Grades are shown
as follows
Aggregate Marks Grade
> = 80 A
Less than 80 and > = 65 B
Less than 65 and > = 50 C
Less than 80 and > = 65 B
Less than 50 D

Public Members
• A function Enter() to allow user to enter values for ANo, Name, Agg & call function

GradeMe() to find the Grade
• A function Result () to allow user to view the content of all the data members.

Ans.
class Applicant
{ long ANo;

char Name[25];
float Agg;
char Grade;
void GradeMe()
{ if (Agg > = 80)

Grade = ‘A’;
else if (Agg >= 65 && Agg < 80)

 Grade = ‘B’;
else if (Agg >= 50 && Agg < 65)

 Grade = ‘C;
else

Grade = ‘D’;
}

public:
void Enter ()
{ cout <<”\n Enter Admission No. “; cin>>ANo;

cout <<”\n Enter Name of the Applicant “; cin.getline(Name,25);
cout <<”\n Enter Aggregate Marks obtained by the Candidate :“; cin>>Agg;

111

GradeMe();
}

void Result()
{ cout <<”\n Admission No. “<<ANo;

cout <<”\n Name of the Applicant “;<<Name;
cout<<”\n Aggregate Marks obtained by the Candidate. “ << Agg;
cout<<\n Grade Obtained is “ << Grade ;

}
};
2.(d) Answer the questions (i) to (iv) based on the following 4
class Student
{ int Rollno;

char SName[20];
float Marks;

protected:
void Result();

public:
Student();
void Enroll ();
void Display ();

};
class Teacher
{ long TCode;

char TName [20];
protected :

float Salary;
public :

Teacher();
void Enter ();
void Show ();

};
class Course : public Student, private Teacher
{ long CCode[10];

char CourseName[50];
char StartDate [8], EndDate[8];
public:
Course();
void Commence();
void CDetail();

 };

(i) Write the names of member functions, which are accessible from objects of class Course
(ii) Write the names of all data members, which is/are accessible from member function

Commence of class Course
(iii) Write the names of all the members, which are accessible from objects of class teacher.
(iv) Which type of inheritance is illustrated in the above C++ code?

Solution
(i). void Commence(), void CDetail(), void Enroll (), void Display ();
(ii) CCode, CourceName, StartDate, EndDate, Salary,
(iii) void Enter (), void Show ();
(iv) Multiple inheritance
3. (a) Write a Get2From1() function in C++ to transfer the content from one array ALL[] to two
different arrays Odd[] and Even[]. The Odd[] array should contain the values from odd
positions(1,3,5,….) of ALL[] and Even[] array should contain the values from even positions
(0,2,4,…) of ALL[].
Example: If the ALL array contains 12,34,56,67,89,90 the Odd[] array should contain 34, 67,90
and the Even[] array should contain 12,56,89 3

112

Ans.
void Get2From1(int ALL[],int n, int Odd[],int Even[])
{int j=0,k=0;
for (int i=0; i<n; i++)

if(i%2==0)
Even[j++]=a[i];

else
Odd[k++]=a[i];

}
3. (b) An array G[50][20] is stored in the memory along the row with each of its elements
occupying 8 bytes. Find out the location of G[10][15], if G[0][0] is stored at 4200. 3
Ans.
Address of G[i][j]=address of G[0][0] +(i*number of columns present in array +j)*sizeof(element)
Address of G[10][15]=4200+ (10*20+15)*8=4200+215*8=4200+1720=5920
3. (c) Write a function in C++ to perform Delete operation on a dynamically allocated Queue
containing Members details as given in the following definition of NODE: 4
struct NODE
{long Mno; //Member Number
 char Mname[20]; //Member Name
 NODE *Link;
};
class Queue
{NODE *front, *rear;
Queue() {front=NULL; rear=NULL;}
public:
void Addq();
void Delete();
};
void Queue::Delete()
{if(front==NULL)

cout<<”Queue is empty”;
else

{NODE *t = front;
 front = front->next;

 if(front==NULL)
rear = NULL;

delete t;
}

}
3. (d) Write a DSUM() function in C++ to find sum of Diagonal Elements from a NxN Matrix.
(Assuming that the N is a odd number) 2
Ans.
int DSUM(int A[],int N)
{int i, dsum1=0,dsum2=0;
for(i=0;i<N;i++)

{dsum1+=A[i][i];
 dsum2+=A[N-(i+1)][i];
}

return (dsum1+dsum2-A[N/2][N/2]);//because middle element is added twice
}
3. (e) Evaluate the following postfix notation of expression.

True, False, NOT, AND, True, True, AND, OR 2

NOT AND AND OR

True
True
True

 True
 True

 True

 True
 True

 False
 True

113

ans: True

4. (a) Observe the program segment given below carefully and fill the blanks marked as
statement1 and statement2 using seekg(), seekp(), tellp() and tellg() functions performing the
required task. 1
#include<fstream.h>
class ITEM
{int Ino;char Iname[20];float price;
public:
void ModifyPrice();//the function is to modify price of a particular ITEM
};
void Item::ModifyPrice()
{fstream File;
File.open(“ITEM.DAT”,ios::binary|ios::in|ios::out);
int CIno;
cout<<”Item No to modify price:”; cin>>CIno;
while(File.read((char *)this, sizeof(ITEM)))

{if(CIno==Ino)
{cout<<”present Price :”<<Price<<endl;
 cout<<”chaged Price :”; cin>> Price;
int Filepos=___________________; //Statement1
_____________________________; //Statement2
File.write((char *)this,sizeof(ITEM));
}

}
File.close();
}
Ans.
Statement1: int Filepos=File.tellg();
Statement2: File.seekp(Filepos-sizeof(ITEM), ios::beg);
4.(b) Write a function in C++ to count the no. of “He”, or “She” words present in a text file
“story.txt”. 2
If the file “story.txt” content is as follows:
He is playing in the ground. She is
playing with her dolls.
The output of the function should be
Count ofHe/She in file is: 2
Ans.
#include<fstream.h>
#include<string.h>
#include<process.h>
int count()
{ifstream ifile(“story.txt”);
 if(!ifile)

{ cout<<”could not open story.txt file “; exit(-1); }
else

{char s[20]; int c=0;
while (!ifile.eof())

{ifile>>s;
 if ((strcmp(s,”He”)==0)||(strcmp(s,”She”)==0))

 c++;
}

ifile.close();
cout<<”Count of He/She in file is :”<<count;
return c;
}

}

114

4.(c) Write a function in C++ to search for camera from a binary file “CAMERA.DAT” containing
the objects of class CAMERA (as defined below). The user should enter the ModelNo and the
function should search and display the details of the camera. 3

class CAMERA
{long ModelNo; float MegaPixel; int Zoom; Char Details[120];
public:
void Enter() { cin>>ModelNo>>MegaPixel>>Zoom; gets(Details); }
void Display(){ cout<<ModelNo<<MegaPixel<<Zoom<<Details<<endl; }
long GetModelNo() { return ModelNo; }
Ans.
void search(long MNo)
{ifstream ifile (“CAMERA.DAT”, ios::in | ios::binary);
 if (! ifile)

{ cout<<”could not open CAMERA.DAT file “; exit(-1); }
else

{CAMERA c; int found=0;
while(ifile.read((char *)&c, sizeof(c)))

{if(c.GetModelNo()==MNo)
{c.Display(); found=1; break;}

}
}

if(found==0) cout<<”given ModelNo not found”;
}
5. (a) What do you understand by Selection and Projections in relational algebra ? 2
Consider the following table EMPLOYEE and salgrade and answer (b) and (c) part of the Question:

Table: EMPLOYEE
ECODE NAME DESIG SGRADE DOJ DOB

101 Abdul Ahmad EXECUTIVE S03 23-Mar-2003 13-Jan-1980
102 Ravi Chander HEAD-IT S02 12-Feb-2010 22-Jul-1987
103 John Ken RECEPTIONIST S03 24-Jan-2009 24-Feb-1983
104 Nazar Ameen GM S02 11-Aug-2006 03-Mar-1984
105 Priyam Sen CEO S01 29-Dec-2004 19-Jan-1982

Table:SALGRADE

SGRADE SALARY HRA
S01 56000 18000
S02 32000 12000
S03 24000 8000

(b) Write SQL commands for the following statements: 4
(i) To display the details of all EMPLOYEES in descending order of DOJ.
(ii) To display NAME and DESIG of those EMPLOYEES whose SALGRADE is either S02 or SO3.
(iii) To display the content of all the EMPLOYEES table, whose DOJ is in between 09-Feb-2006 and
08-Aug-2009.
(iv) To add a new row with the following

109, ‘Harish Roy’, ‘HEAD-IT’, ‘S02’,’09-Sep-2007’, ’21-Apr-1983’
(c) Give the output of the following SQL queries : 2

(i) SELECT COUNT(SGRADE), SGRADE FROM EMPLOYEE GROUP BY SGRADE;
(ii) SELECT MIN(DOB), MAX(DOJ) FROM EMPLOYEE;
(iii) SELECT NAME,SALARY FROM EMPLOYEE E, SALGRADE S

WHERE E.SGARDE=S.SGRADE AND E.ECODE<103;
(iv) SELECT SGRADE, SALARY+HRA FROM SALGRADE WHERE SGRADE=’S02’

Ans. Selection means selecting some rows(touples) from a relation according to given condition
e.g. σprice>20.0(Item)
Project operation yields a vertical subset of a given relation(i.e. select all tuples containing only given
columns of a relation).

115

e.g. π NAME, DESIG(Employee)
 (b)(i) SELECT * FROM EMPLOYEE ORDER BY DOJ DESC;
 (ii) SELECT NAME,DESIG FROM EMPLOYEE WHERE SALGRADE IN(‘S02’,S03’);
 (iii) SELECT * FROM EMPLOYEE WHERE DOJ BETWEEN ‘09-Feb-2006’ AND ’08-Aug-2009’;
(iv) INSERT INTO EMPLOYEE

VALUES(109,’Harish Roy’,’HEAD-IT’,’S02’,’09-Sep-2007’,’21-Apr-1983’);
(c) (i) COUNT SGRADE

 2 S03
 2 S02
 1 S01

(ii) 13-Jan-1980 12-Feb-2010
(iii) NAME SALARY

Abdul Ahmad 24000
Ravi Chander 32000

(iv) SGRADE SALARY+HRA
S02 44000

6.(a) Verify the following using truth table: 2
X+Y.Z=(X+Y).(X+Z)

Ans.
X Y Z Y.Z X+YZ (X+Y) (X+Z) (X+Y)(X+Z)
0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0
0 1 0 0 0 1 0 0
0 1 1 1 1 1 1 1
1 0 0 0 1 1 1 1
1 0 1 0 1 1 1 1
1 1 0 0 1 1 1 1
1 1 1 1 1 1 1 1

6.(b) Write the equivalent Boolean Expression for the following Logic Circuit : 2

Ans. F=P.Q’+P.R’
6.(c) Write the SOP form of a Boolean function F, which is represented in a truth table as
follows: 1

Ans.
F=U’V’W’+U’VW+UVW’+UVW

6. (d) Reduce the Boolean expression using K-Map: 3
F(A,B,C,D)=∑(0,1,2,4,5,6,8,10)

Ans. F(A,B,C,D)=B1+B2+B3
B1=m0+m2+m8+m10=B’D’
B2=m0+m1+m4+m5=A’C’
B3=m0+m4+m2+m6=A’D’
F(A,B,C,D)=B’D’+A’C’+A’D’

7.(a) In networking, what is WAN? How is it different from LAN? 1
Ans.
WAN is Wide Area Netork LAN is Local Area Network

U V W F
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

116

Span across countries
Low data rate

Diameter of not more than a few kilometer
High data rate

7.(b) Differentiate between XML and HTML. 1
Ans. In HTML(HyperText Markup Language), both tag semantics and the tag set are fixed whereas,
XML (eXtensible Markup Language) is a meta-language for describing markup languages, XML
provides facility to define tags and the structural relationships between them. All the semantics of an
XML document will either be defined by the applications that process them or by stylesheets.
7.(c) What is WEB2.0 ? 1
Ans. The term Web 2.0 is associated with web applications that facilitate participatory information
sharing, interoperability, user-centered design, and collaboration on the World Wide Web. A Web 2.0
site allows users to interact and collaborate with each other in a social media dialogue as creators
(prosumers) of user-generated content in a virtual community, in contrast to websites where users
(consumers) are limited to the passive viewing of content that was created for them. Examples of
Web 2.0 include social networking sites, blogs, wikis, video sharing sites,hosted services, web
applications, mashups and folksonomies.
7.(d) Out of the following, identify client side script(s) and server side script(s) 1

(i) Javascript (ii) ASP (iii) vbscript (iv) JSP
Ans. Client side scripts are Javascript, and vbscript, server side scripts are ASP, and JSP
7.(e) Great Sudies University is setting up its Academic school at Sunder Nagar and planning
to set up a network. The university has 3 academic schools and one administration center as
shown in the diagram bellow: 4

Law school 25
Technology school 50
Admin center 125
Business school 35

(i)Suggest the most suitable place(i.e school/center) to install the server of this university Sugewith a
suitable reason.
(ii)Suggest an ideal layout for connecting these school/center for a wired connectivity.
(iii)Which device will you suggest to be placed/installed in each of these school/center to efficiently
connect all the computers within these school/center.
(iv)The university is planning to connect its admission office in the closest big city,which is more than
350 km from the university.Which type of network out of LAN,MAN or WAN will be formed?Justify
your answer.

(f)Compare Open Source Software and Proprietary Software.
(g)What are cookies?
Ans.
(i)Admin Center because it contains maximum number of computers (using 80-20 rule).
(ii) BUS topology is the best suitable cable layout.

 (iii)Switch
(iv)WAN because LAN and MAN cant not spanmore than 100 km.

Law school to Business school 60m
Law school to Technology School 90m
Law school to Admin Center 115m
Business school to Technology School 40m
Business school to Admin Center 45m
Technology school to Admin Center 25m

117

http://en.wikipedia.org/wiki/Folksonomies
http://en.wikipedia.org/wiki/Mashup_(web_application_hybrid)
http://en.wikipedia.org/wiki/Web_application
http://en.wikipedia.org/wiki/Web_application
http://en.wikipedia.org/wiki/Web_service
http://en.wikipedia.org/wiki/Video_sharing
http://en.wikipedia.org/wiki/Wiki
http://en.wikipedia.org/wiki/Blog
http://en.wikipedia.org/wiki/Social_networking_site
http://en.wikipedia.org/wiki/Content_(media_and_publishing)
http://en.wikipedia.org/wiki/Consumer
http://en.wikipedia.org/wiki/Virtual_community
http://en.wikipedia.org/wiki/User-generated_content
http://en.wikipedia.org/wiki/Prosumers
http://en.wikipedia.org/wiki/Social_media
http://en.wikipedia.org/wiki/World_Wide_Web
http://en.wikipedia.org/wiki/Collaboration
http://en.wikipedia.org/wiki/User-centered_design
http://en.wikipedia.org/wiki/Interoperability
http://en.wikipedia.org/wiki/Information_sharing
http://en.wikipedia.org/wiki/Information_sharing

(f)Compare Open Source Software and Proprietar Software. 1
Ans.Open Source Software can be freely used (source code is available to yhe customer) but it does
not have to free of charge
Proprietary Software is the software that is neither open nor freely available(source code is not
available,further distribution and modification is either forbidden or requires special permission by the
supplier or vendor.
(g)What are cookies? 1
Cookies are messages that a web server transmits to a web browser so that the web server can keep
track of users activity on a specific web site.

118

Page 119 of 119

	Objects:
	Classes:
	Inheritance:
	Data Abstraction:
	Polymorphism:
	Overloading:
	Reusability:
	Default Constructors and Destructors
	Explicit assignment in an expression
	Initialization
	Examples
	Implicit copy constructor
	INHERITANCE
	Features or Advantages of Inheritance:
	Inheritance helps the code to be reused in many situations.
	The base class is defined and once it is compiled, it need not be reworked.
	Using the concept of inheritance, the programmer can create as many derived classes from the base class as needed while adding specific features to each derived class as needed.
	Increases Program Structure which results in greater reliability.
	General Format for implementing the concept of Inheritance:
	Inheritance Example:

	1. Single class Inheritance:
	2. Multilevel Inheritance:
	3. Multiple Inheritances:
	4. Hierarchical Inheritance:
	5. Hybrid Inheritance:
	Pointers to pointers
	Operators delete and delete[]

	Row-major order
	The information / data carry from one end to another in the network by channel.
	It’s used to measurement for the information carry of a communication channel.
	Measurement Units :-
	bit
	1 Byte= 8 bits
	1 KBPS (Kilo Byte Per Second)= 1024 Bytes ,
	1 Kbps (kilobits Per Second) = 1024 bits,
	1 Mbps (Mega bits Per Second)=1024 Kbps
	It is amount of information transmitted or receives per unit time.
	 It is measuring in Kbps/Mbps etc unit.
	Network Interface Cards (Ethernet Card)
	BridgesA network bridge connects multiple network segments at the data link layer (layer 2) of the OSI model. Bridges do not promiscuously copy traffic to all ports, as hubs do, but learn which MAC addresses are reachable through specific ports. Once the bridge associates a port and an address, it will send traffic for that address only to that port. Bridges do send broadcasts to all ports except the one on which the broadcast was received.
	Switches
	Switch is a device that performs switching. Specifically, it forwards and filters OSI layer 2 datagrams (chunk of data communication) between ports (connected cables) based on the Mac-Addresses in the packets. This is distinct from a hub in that it only forwards the datagrams to the ports involved in the communications rather than all ports connected. Strictly speaking, a switch is not capable of routing traffic based on IP address (layer 3) which is necessary for communicating between network segments or within a large or complex LAN.
	Routers
	Network topology
	Star Topology
	Bus Topology
	Ring Topology
	The type of network topology in which each of the nodes of the network is connected to two other nodes in the network and with the first and last nodes being connected to each other, forming a ring – all data that is transmitted between nodes in the network travels from one node to the next node in a circular manner and the data generally flows in a single direction only.

	A communications network is two or more computers connected to share data and resources are “networked.” The simple idea behind computer networking is to allow users to access more information and give them access to devices not directly attached to their “local” system, such as printers or storage devices
	Local Area Network (LAN)
	A network covering a small geographic area, like a home, office, or building. Current LANs are most likely to be based on Ethernet technology. For example, a library will have a wired or a communications network is two or more computers connected to share data and resources are “networked.” The simple idea behind computer networking is to allow users to access more information and give them access to devices not directly attached to their “local” system, such as printers or storage devices.
	Metropolitan Area Network (MAN)
	 Wide Area Network (WAN)

